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Abstract
How fast and efficiently page faults are handled determines

the performance of paging-based memory disaggregation

(MD) systems. Recent MD systems employ busy-waiting in

page fault handling to avoid costly interrupt handling and

context switching. Upon a page fault, they issue a remote

fetch request and busy-wait for the completion of the re-

quest rather than yield their execution to other tasks. While

these attempts succeed to cut the latency of MD systems to

microseconds, they suffer from head-of-line (HOL) blocking

that leads to high tail latency and causes RDMA network

underutilization.

To address the problems, we reload the yield-based mecha-

nism into the page fault handling and propose a newMD sys-

tem, Adios. While yielding involves the switching overhead,

Adios minimizes it by putting the page fault handler and the

execution scheduler into a single address space. Then we

use newly designed lightweight user-level threads, namely

unithread. We also devise a dispatching algorithm that allevi-

ates the imbalance in RDMA queue pairs, assuring lessened

queueing delays and improved RDMA network utilization.

Our evaluation demonstrates that Adios outperforms an ex-

isting state-of-the-art busy-waiting MD system, DiLOS, by

up to 1.07-1.64× in throughput and 1.99-10.89× in P99.9 la-

tency on real-world applications.
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1 Introduction
Memory disaggregation (MD) systems decompose a comput-

ing system into separately managed compute and memory

nodes connected by a fast interconnect such as RDMA. By

dynamically allocating memory resources on demand, they

improvememory utilization andmemory scaling across hard-

ware boundaries. They also gain availability from separate

hardware fault domains [10].

Diverse approaches to MD systems have emerged over

time. Those in the exploration of application semantics have

implemented MD in libraries or runtimes. Others have cho-

sen transparency and opted for implementation in an OS

kernel. Kernel-based MD systems extend paging-based mem-

ory systems and support existing applications to run without

modification [4, 21, 44, 48, 54, 60, 64]. Infiniswap, the first

MD system based on paging [21], and later paging-based

systems use RDMA-connected remote memory as a backing

store.

MD systems with busy-waiting. At the core of paging-

based systems lies page fault handling. When an application

accesses memory uncached in local DRAM, a page fault

occurs, and the page fault handler fetches the faulted page

from a remote memory node. While the NIC fetches pages

in background, traditional page fault handlers yield their

contexts for CPU to execute other tasks. Once the page fetch

is complete, interrupt handling and context switching take

place, resulting in more than 100–1,000 𝜇sec of latency [21].

In order to overcome this latency penalty, recent MD systems

have adopted busy-waiting in page fault handling [4, 44,

48, 64]. The rationale behind busy-waiting is that remote

memory access via RDMA is faster than interrupt handling

and scheduling. Fastswap has adopted busy-waiting and

reported a 3× throughput improvement over Infiniswap with

yield-based page fault handling [4].

The rise of low-latency I/O devices has changed the time

scale of event handling in modern datacenters; they have

pushed systems to review existing layering and abstractions

and to optimize in the microsecond scale [7, 15, 39]. Re-

cent MD systems, such as Hermit and DiLOS, push the per-

formance into the microsecond scale by building efficient

code paths for busy-waiting page fault handlers. Hermit
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has removed non-urgent operations in the page fault han-

dler and processes them asynchronously. It “reduces the

99th percentile tail latency by 99.7%” in Memcached against

Fastswap [48]. DiLOS builds upon the OSv unikernel, and

its lightweight page fault handler cuts down the Redis GET

latency to just a third of Fastswap’s. It consolidates all paging-

related data structures into a unified page table in order to

perform page fault handling with a single lookup.

Shortcomings of busy-waiting. With the advent of RDMA

in modern computing servers, busy-waiting has become a

viable solution. Yet, it has shortcomings. First, tasks queued

behind a busy-waiting task experience head-of-line (HOL)

blocking. HOL blocking exacerbates when queues are par-

titioned or the workload has high dispersion [28, 47]. One

more issue with busy-waiting is limited concurrency. Mod-

ern NICs allowmultiple outstanding requests. If the tasks are

busy-waiting, the maximum number of outstanding requests

is small and suboptimal. This results in NIC and networking

underutilization, limiting potential gain in throughput.

Lightweight user-level threading. The above shortcom-

ings of busy-waiting have made us revisit its original mo-

tivation: avoiding interrupt handling and context switch-

ing overhead. The source of context switching overhead is

heavy-weight kernel threads and their schedulers [5]. In

contrast to kernel threads and schedulers, a user-level sched-

uler creates multiple stacks within a process and switches

contexts by manipulating the stack pointers. Since all op-

erations in user-level context switching are unprivileged,

neither expensive mode switching nor kernel operations oc-

cur, enabling sub-microsecond context switching. Thanks to

its lightness, user-level threading has been widely adopted

for microsecond-scale scheduling [26, 28, 46, 49, 58]. Capric-

cio is an early effort to utilize user-level threading to support

tens of thousands of concurrent requests [58]. Arachne’s

lightweight context switching allows user-level threads to

adapt to a dynamically changing number of CPU cores [49].

Shenango enhances its core allocator with busy-spinning

and succeeds in cutting down the CPU core reallocation time

to as low as 5 𝜇s [46]. Shinjuku, on the other hand, extends

user-level threads to support preemption at the microsec-

ond scale [28]. It reduces the overhead of preemptive sched-

uling by directly accessing IPI (Inter Processor Interrupt)

hardware using virtualization technology in its single ad-

dress space and protection domain. Given a high dispersion

workload, Shinjuku approximates the PS (Processor Shar-

ing) scheduling and drops the tail latency from milliseconds

to microseconds. Concord enhances the preemptive sched-

uler using compiler instrumentation rather than IPI [26]. It

inserts yield points during compilation, and applications vol-

untarily yield their contexts if requested at such points. By

shifting to compiler-based preemption, Concord cuts down

the preemption overhead to 1/4 of Shinjuku’s.

Limitations of user-level threading. For all the advan-

tages that user-level threads and schedulers offer, it is not
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#2 R2

PF
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page faults busy-wait

HOL blocking

Figure 1. Architecture of a single queue request handler.

Requests flow from left to right. If any page fault, page fault

handlers issue RDMA commands and busy-wait.

straightforward to adopt them in MD systems. Since page

faults are kernel-level events, user-level schedulers have

no direct way to be notified. The page fault handler has to

wake up a user-level handler [5] and the scheduler follows

up. In Linux, userfaultfd is widely used to handle page

fault events at user-level [2]. It was originally developed

to support VM live migration [1], but later also applied to

other uses. Canvas uses it to design two-tier prefetching for

MD [61]. When the default kernel prefetcher is not effec-

tive, Canvas forwards prefetching events to the application

tier. The application computes pages based on the user-level

thread’s access patterns and prefetches them. zIO designs

transparent zero-copy I/O by tracing application accesses

to buffer via userfaultfd [55]. Its main insight is that the

application touches only a small portion of the I/O buffer

during transmission, and it copies only the touched areas.

User-level handlers, such as userfaultfd, still add a few

microseconds to the overall request service latency [63].

Sketch of Adios design. In order to take advantage of light

user-level threading and to achieve microsecond latency in

MD systems, we presume that the page fault handler and

the scheduler should reside in the same address space and

protection domain. This has led us to design a new mem-

ory disaggregation system, Adios, based on a single address

space. (1) In this work, we choose to use a unikernel for

its compact code base. In our system, the page fault handler

yields directly to the scheduler upon issuing a page fetch and

returns to the thread upon page fetch completion. This direct

switching between the handler, the scheduler, and threads is

efficient. The scheduler implements the single queuing pol-

icy, which has proven to achieve the best tail latency [26]. (2)

Our threads should be as light as user-level threads but carry

out kernel functions such as page fault handling. Under a

heavy workload of millions of requests per second, a thread

per request may build up to a significant portion of local

memory and limit the cache size for remote memory. We

have designed and implemented a unithread that occupies a

minimal memory footprint but uses unified data structures

for both kernel and user stacks. (3) The scheduler employs a

dispatching algorithm that selects, among idle workers, one

with the least number of in-flight page fetches. The dispatch-

ing algorithm alleviates imbalances in RDMA QPs (Queue

Pairs).
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Figure 2. Performance analysis of DiLOS [64]. For (b) and (c), the throughput is 1.3 MRPS. In (c), queueing delay due to

busy-waiting is marked with slashes.

Evaluation and conclusion. For evaluation, we compare

Adios with busy-waiting page fault handling systems, Her-

mit [48] and DiLOS [64]. In our evaluation, we also include a

modified version of DiLOS with a preemptive scheduler sim-

ilar to Concord [26]. This scheduler preempts long-running

tasks and executes other tasks during page fetching. It is

a representative user-level scheduler design that addresses

the HOL blocking problem. Yet without cooperation from

the page fault handler, the preemptive scheduler is obliv-

ious to busy-waiting and does not discern such tasks. In

microbenchmark evaluation, we demonstrate that Adios’

yield-based handler succeeds in eliminating HOL blocking,

resulting in a precipitous drop in tail latency and a 58% in-

crease in RDMA link utilization. We use four real-world

applications, Memcached [14], RocksDB [24], Silo [57], and

Faiss [17], to demonstrate that Adios carries MD into the

realm of the microsecond scale. Overall, Adios outperforms

Hermit and DiLOS by achieving up to 1.67-4.97× and 1.07-

1.64× higher throughput; and 1.83-4.30× and 1.99-10.89×
better P99.9 latency, respectively. Compared to DiLOS with a

preemptive scheduler, Adios delivers 2.71× better P99.9 GET

latency under a RocksDB workload mixed with 99% GET/1%

SCAN (100), where preemptive scheduling is effective.

Below, we summarize our contributions:

• We present a novel MD system, Adios, that is based on

yield-based page fault handling. To the best of our knowl-

edge, Adios is the first MD system to achieve a single-digit

microsecond-scale tail latency.

• We show that Adios eliminates HOL blocking problem

cases from busy-waiting with our yield-based page fault

handling and page-fault-aware dispatching algorithm.

• Our Adios delivers greatly improved performance over

existing systems in real-world workloads: tail latency (1.99-

10.89×) and throughput (up to 1.07-1.64×).
Source code. The source code of Adios is available at https:
//github.com/ANLAB-KAIST/adios.

2 Motivation
Before we present our Adios design, we delve into the in-

efficiencies stemming from busy-waiting in MD systems.

Microbenchmark analysis of these inefficiencies has been

the motivating guideline for us to design our MD system.

For our investigation, we choose DiLOS [64], one of the

most recent MD systems with the best-reported performance

and publicly available source code. On top of DiLOS, we im-

plement a request handler designed to process networked

requests from clients. The architecture follows a single queue

model, akin to other well-known microsecond-scale sys-

tems [16, 26, 28]. Figure 1 illustrates the system configuration.

When networked requests arrive, they are distributed from

a central queue to the workers. In case of a page fault in a

worker, the page fault handler takes control and initiates a

retrieval of the remote page by issuing an RDMA request.

The page fault handler busy-waits for the completion of the

outstanding RDMA fetch request.

For our analysis, we set the local cache size to 20% of the

total working set and vary the offered load. We measure

the latency and analyze its contributing factors. From the

throughput measurement, we analyze whether or not the

throughput matches the RDMA bandwidth at full utilization.

We use an open-loop load generator to emulate a large

number of clients. It runs on a node separate from our com-

pute and memory nodes. Additional details about the load

generator are in §4.

2.1 Tail Latency Breakdown
We measure the latency under a heavy workload and break

down the main contributing factors in the tail latency. We

configure the request handler to have an array whose size

does not fit in the local memory; only 20% of the working set

fits in the local memory, and the rest is in remote memory..

The handler receives requests, each of which contains a

random index of the array. The handler replies with the

value at the index.

We first measure the end-to-end (e2e) latency, which is

calculated by subtracting the TX timestamp from the RX

timestamp at the load generator. This end-to-end latency

includes the network delay between the load generator and

all delays (e.g., queueing, processing, and remote memory)

in computing nodes. We plot the 99th percentile
1
of the e2e

latency against the varying workload along the 𝑥-axis in Fig-

ure 2(a). At around 1,300,000 requests per second (1.3 MRPS),

the P99 latency starts to increase rapidly (labeled ‘Busy-wait’

1
We use the notation of Px for the x-th percentile for the rest of this paper.
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in Figure 2(a)). We leave the graph labeled ‘Preemption’ for

later discussion in §2.3. To investigate further, we plot the

latency distribution of DiLOS at 1.3 MRPS and its request

handling breakdown in Figures 2(b) and 2(c), respectively.

The cumulative distribution function (CDF) of the latency

outlines three distinct regions of performance: below P20

(the dotted red line), below P99 (the dotted blue line), and

above P99. The requests with latency below P20 are those

served from local memory, as we have configured a 20% local

memory ratio for the working set. Beyond P99, we observe

that the latency is about 10× higher than the latency below

P20. Figure 2(c) plots the breakdown of the request handling

latency at P10, P50, P99, and P99.9. The 𝑥-axis is in cycles,

measured using rdtsc() on the compute node. Note that

this latency does not cover the connection between the load

generator and the compute node; only from the point a re-

quest arrives at the compute node and till its reply departs.

At P10, there is no RDMA overhead in the latency, while

at P50, the RDMA overhead takes up more than half of the

overall cycles. Here, the range of the 𝑥-axis is up to 15 Kcy-

cles. From P50 to P99, the overall latency jumps by 5×, and
from P99 to P99.9, it jumps more than 5×. Pay attention that

the 𝑥-axis now plots up to 300 Kcycles. From P50 to P99.9,

there is more than an order of magnitude difference, most of

which comes from the queueing delay.

In Figure 2(c), we have marked with slashes among queue-

ing delay the time spent in busy-waiting. They are negligible

at P10 and P50 but become dominant in P99 and P99.9. From

this analysis, we conclude that HOL blocking is the dominant

factor in high queueing delays.

2.2 Under-utilized RDMA
Next, we examine the impact of busy-waiting on the through-

put. We use the same configuration as the previous experi-

ment but measure the request handling throughput under

varying loads.

Figure 2(d) shows the measurement result. As we vary the

load along the 𝑥-axis starting from 1 MRPS up to 3 MRPS in

the unit of 50 KRPS, at around 1.4MRPS, the request handling

throughput stalls. The gap between the offered load and

the throughput translates to dropped requests. We observe

that as the throughput approaches 1.4 MRPS, the system is

saturated: the P99 latency shoots up as seen in Figure 2(a),

and the throughput stagnates at around 1.38 MRPS as seen

in Figure 2(d).

Is the throughput capped by busy-waiting or by the RDMA

bandwidth? Here, we check to see if the RDMA network

bandwidth is saturated. Figure 2(e) shows the RDMA link

utilization from the experiment. Even in the range of offered

load above 1.4 MRPS, where the system drops requests, the

RDMA link shows utilization of only 50% and has room for

more traffic.

2.3 Limitations of Existing Approaches
So far, we have seen in detail the impact of busy-waiting

in page fault handling. Now, how should we address the

shortcomings of busy-waiting? First, let us look at existing

approaches.

Overlapping computation with I/O. To reduce wasted

cycles from busy-waiting, MD systems overlap computation

with page fault I/O. Executing a prefetching algorithm is one

of the most common tasks chosen for overlapping [4, 44, 48,

64]. After issuing an I/O request but before starting busy-

waiting, these systems compute prefetching algorithms and

issue additional page fetches. On top of prefetching, Hermit

also overlaps metadata updates and cgroup accounting with

I/O. However, processing these tasks accounts for only 10%

of the entire page fetching latency, and the remaining 90%

of the cycles are still wasted [48].

User-level threading. As pointed out in other works [4, 44,

48, 64], a general-purpose kernel scheduler is too heavy to

support context switching during fast I/O. To reduce the high

context switching overhead, many systems adopt user-level

threads and schedulers [26, 28, 46, 49, 58].

Preemptive scheduling mitigates HOL blocking in scenar-

ios where a long-running task (busy-waiting in our case)

blocks short-running tasks. Shinjuku [28] and Concord [26]

have demonstrated that preemption is viable formicrosecond-

scale scheduling. To check the effectiveness of preemption

in user-level threading, we conduct the same experiment as

in §2.1 but with a preemptive scheduler added to DiLOS. It

closely follows the design of Concord. We defer a detailed de-

scription of the preemptive scheduler implementation to §5.

The scheduler uses the 5 𝜇s preemption interval, which is the

default value of Shinjuku and the minimum value without

significant system overhead in Concord. We plot the results

in a graph labeled ‘Preemption’ in Figure 2(a). Just from the

5 𝜇s preemption interval and a typical 2-3 𝜇s delay for a

4KB page fetch over RDMA, we observe that the preemp-

tive scheduling does not improve the performance of MD

systems but rather deteriorates the P99 latency. Preemptive

scheduling alone in user-level threading is of little impact.

Limitations of user-level threading. From themicrobench-

mark analysis in this section, we have seen that current busy-

waiting page fault handling incurs much queueing, especially

at the tail of the latency distribution, and leaves much room

for improvement in network utilization. As we have argued

in §1, the main hurdle for adopting user-level threading in

MD systems is that the page fault handler and the user-

level scheduler reside in separate protection domains and

are oblivious to each other. Next, we list the challenges for a

new MD system.

2.4 Our Approach and Challenges
We begin the design of a new MD system departing from to-

day’s busy-waiting MD systems. Upon issuing an RDMA
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page fetch command, the page fault handler pauses and

switches contexts swiftly to other user-level threads. In order

to build such a page fault handler in the same protection

domain as the scheduler and threads, we need to address the

following challenges.

Challenge #1: Limited features of user-level threads.
User-level threads lack features that kernel-level threads

have, such as exception handling. In order for a user-level

thread to deal with exception handling, it needs its own

exception stack. It also should handle page table walking,

prefetching, and I/O of its own exceptions. This exception

handling increases both the computation and memory over-

heads of threading. We need an efficient mechanism to curb

the overhead.

Challenge #2: High cooperation cost. Yield-based page

fault handling requires close cooperation with the user-level

scheduler, the kernel page fault handler, and the I/O devices.

Having them in separate protection domains costs highly at

boundary-crossing. Focusing on a single component or layer

alone has limited impact.

Challenge #3: Uneven distribution of page fault re-
quests. With yield-based fault handling, more RDMA com-

mands are issued at any given time, and they result in in-

creased RDMA throughput. Some workers may have an un-

fair share of page faults, because not all requests cause page

faults. Some RDMA QPs, in turn, may have more outstand-

ing requests than others. This unfair distribution in RDMA

requests generates a transient long queueing delay in some

QPs and pushes the tail latency to go up.

3 Design of Adios
As discussed in §2.4, reaping the performance benefits of

yield-based page fault handling at the microsecond-scale

necessitates revamping the entire datapath of memory dis-

aggregation and a new abstraction for lightweight context

switch. Without such reconsideration, the major overhead

arises from context-switching and communication costs be-

tween the kernel and the scheduler, negating the advantages

of yield-based page fault handling. In response, we do not

limit our effort to a single layer but across all layers–the

kernel, the scheduler, and the application–to fully harness

the advantages of yield-based page fault handling.

Address Challenge #1: Formulate a new abstraction
for lightweight threads. The page fetch latency in mod-

ern 100GbE RDMA NICs is as low as 2-3 microseconds [29,

64, 66]. This latency draws an upper bound for the context-

switching time from the yield-based page fault handler to an

application thread. To meet the strict latency requirement,

we introduce unithread, a lightweight abstraction that pro-

vides fast context switching and kernel features to perform

page fault handling. Moreover, the unithread employs univer-
sal stack design that consolidates all stack data for user and

  MD Scheduler

  Memory Manager

ETH NIC

Dispatching
Algorithm

PF Handler

Async PF
HandligPF

RDMA NIC

Page PoolReclaimer
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WorkersWorkersWorkersWorkers

lightweight
context-switch
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Figure 3. Adios’ computing node architecture

kernel-level threads into a single stack, reducing memory

fragmentation across kernel and user stacks.

Address Challenge #2: Adopt unikernel to run all com-
ponents in a single address space and protection do-
main. To build the yield-based page fault handling mech-

anism, we implement the Adios kernel as a unikernel. In a

conventional architecture, applications and their libraries

operate within the user space, while the page fault handler

resides in the kernel space. The control transfer time in Intel

x86 using the iret instruction takes 1-2 𝜇s. Furthermore, the

kernel cannot directly transition to user-level contexts, as

mechanisms such as Intel SMEP (Supervisor Mode Execution

Prevention) or ARM PXN (Privileged Execute-Never) strictly

forbid direct control jumps from the kernel to the user level.

In a unikernel instance, there is no longer a distinction be-

tween user and kernel components, as all components are in

the same address space and protection domain, eliminating

any boundary-crossing cost.

AddressChallenge #3: Devise a fairmechanism to break
the uneven page fetches over RDMA QPs. Faced with

uneven distribution of page fetches across RDMA QPs, we

should allocate a worker to an arriving task in such a way to

break the unevenness, if any. We devise a task-dispatching

algorithm that takes into account the number of outstanding

page fetches per RDMA QP.

In this section, we first present an overall architecture

of Adios in §3.1 and the unithread, core data structure of

Adios in §3.2. Adios consists of two main parts: the memory

manager performing yield-based page fault handling and

the MD scheduler executing unithreads. We describe the

memory manager in §3.3 and the MD scheduler in §3.4.

3.1 Adios Architecture
Figure 3 illustrates the overall architecture of Adios’ comput-

ing node. The memory manager is responsible for providing

remote memory functionalities to the scheduler, including

page fault handling and reclamation. Similar to previous MD

systems [4, 21, 44, 59, 60, 64], the computing node leverages

one-sided RDMA due to its performance benefits over two-

sided RDMA. The MD scheduler consists of a dispatcher
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Figure 4. Unithread’s memory layout.

and workers. The dispatcher distributes networked requests

from clients across the workers, and the workers process the

requests.

Application execution model. To handle multiple re-

quests concurrently, Adios follows a thread-based architec-

ture similar to prior studies [26, 28]. Upon receiving a new

request, a worker creates a new unithread dedicated for

the request and context-switches to the unithread. In the

unithread, the application processes the request and context-

switches back to the worker at the end.

3.2 Unithread
The goal of the unithread is to provide both kernel and user

features while consuming minimal memory footprint. Adios

pre-allocates memory for unithreads to avoid runtime allo-

cation overhead, and the number of pre-allocated unithreads

must be sufficient to handle bursty request arrivals. We have

to meet conflicting goals of pre-allocating sufficient memory

for unithreads but minimizing the overall memory footprint.

The number of pre-allocated unithreads is configured and

fixed to 131,072 in total, but it can be lowered to reduce

memory usage or increased to tolerate workloads with more

intensive bursts of requests. We focus our memory-saving

effort on compact data structures for unithreads.

Data structure. To reduce the memory used for threading,

each unithread is designed to have a memory footprint as

small as possible. In particular, Adios allocates a single buffer

that contains both a network request and a unithread’s con-

text to execute the request (Figure 4). On receiving a network

request, the networking stack stores the packet payload at

the head of the buffer. At the end of the packet payload,

unithread context data structure and the stack area follow.

The context data structure contains just enough information

to save and restore context necessary for executing appli-

cation’s code, minimizing the memory footprint and thus

context-switch time. That is, a unithread context only in-

cludes one argument register and five callee-saved registers

(rbp, rip, rsp, mxcsr, and fpucw). The rest of the registers,
including floating pointer registers, are stored in the caller’s

stack frame if necessary [42]; hence, there is no need to

save and restore them. Without dumping the entire floating

point registers, unithread achieves low overhead context-

switching. Compared to Shinjuku’s user-level threads, the

unithread is far faster in context switching. We run mi-

crobenchmarks to compare the cycles in context switching.

Our unithread context switching is 4.7× faster and uses 12.1×
smaller memory than Shinjuku’s ucontext_t, which pro-

vides equivalent functionality (Table 1).

Mechanism Context Size Cycles

Adios’ unithread 80B 40

Shinjuku’s ucontext_t 968B 191

Table 1. Comparison of context-switching mechanisms

Worker Page Fault
Handler

① new request
dispatched

② context-
switch ③ page

fault

 ⑤ context-
switch with

async PF event

 ④ issue page
fetch request⑥ notify

dispatcher

⑦ new request
dispatched

⑧ page
fetched

⑨ context-
switch

⑩ map page &
return to app

Unithread

Figure 5. Yield-based page fault handling procedure

Universal stack. To further reduce the memory footprint of

the unithreads, Adios employs a single shared stack, universal
stack. In conventional OSes, the user-level and the kernel

code operate on separate stacks to isolate kernel data from

user-level code. Adios merges the kernel and application

stacks into one, allowing each unithread to use a universal

stack for both the kernel and the user code. This universal

stack design reduces internal fragmentation compared to the

traditional two-stack model, eventually reducing memory

usage. It is worth noting that this co-location is possible

because we co-design the unikernel and the scheduler.

Overall, a unithread consumes aminimumof 4KB
2
ofmem-

ory per request, whereas in Shinjuku, each request needs

at least 12KB: 4KB each for packet payload and context,

user-level stack, and exception (kernel) stack. As a result, a

unithread has a 66% smaller memory footprint per request,

and in turn, it reduces 66% of pre-allocated buffers (131,072

in total), freeing 1GB (which corresponds to 12.5% of the 8GB

local DRAM cache size used in the experiments).

3.3 Yield-based Page Fault Handling
In the yield-based page fault handling, the page fault handler

context-switches back to the worker instead of waiting for

the page fetch to complete, thereby eliminating busy-waiting

in the code path. Figure 5 describes the procedure of our

yield-based page fault handling. 1 A worker receives a new

request from the dispatcher and 2 starts handling the request

by context-switching to its application unithread. 3 If the

application unithread accesses a page that does not reside in

the computing node’s local memory, a page fault exception

occurs. Then, 4 the page fault handler issues a yield-based

page fetch request to the memory node and 5 yields its

2
The stack size may grow if an application requires larger stack.
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context to the worker. 6 The worker informs the dispatcher

to receive and 7 handles a new request. Before starting new

unithreads, the worker polls the NIC’s queue once to check

page fetch request completions. Later, 8 the outstanding

page fetch request completes, the request is polled, and 9

the worker context-switches back to the page fault handler.

Lastly, 10 the page fault handler maps the fetched page and

returns to the original request handler.

Reclaimer. If no local cache page is available, the page fault

handler is unable to allocate a new page and must pause until

the reclaimer evicts a page. In many OSes such as DiLOS,

reclaimer threads wake up on high memory pressure and

start evicting unused pages. Since the threads are managed

by schedulers, the wake up of the reclaimer threads is subject

to scheduling overheads as well as delays due to execution

of other tasks. If the wake up process takes too long, page

allocation overtakes page reclamation, resulting in an out-

of-memory state that freezes the whole system. In contrast,

Adios employs a pinned dedicated thread that reclaims pages

proactively to eliminate the wake up process. Our proactive

page reclamation works as follows. The reclaimer thread

monitors the current level
3
of memory use and proactively

evicts pages before entering an out-of-memory state. The

reclaim process is highly responsive because the thread is

pinned to a CPU core and starts reclamation immediately

after reaching a certain threshold of memory pressure.

3.4 MD Scheduler
The MD scheduler distributes requests and unithreads across

CPU cores. Its primary performance objective is to mini-

mize the request handling latency. To meet this objective,

Adios employs several scheduling techniques, including sin-

gle queueing, PF(page fault)-aware dispatching, and polling

delegation.

Single queueing. Adios’ scheduling policy is based on

single queueing. One or a few centralized dispatchers receive

requests from the network, and they assign the requests to

available workers. This mechanism alleviates HOL blocking

and cuts down the tail latency. Many systems employ this

design [16, 26, 28].

Single queueing follows a centralized FCFS (First-Come

First-Serve) policy and does not perform work-stealing (ap-

proximated centralized FCFS) [47]. Both centralized and ap-

proximated centralized FCFS queuing policies reduce load

imbalance across workers. Yet the work-stealing algorithm

needs to scan the queues, which is sub-optimal for low dis-

persion and highly concurrent workloads [28], and thus we

do not adopt it in our system design.

PF-aware dispatching for temporary page fault imbal-
ance. In a system with a busy-waiting page fault handler,

eachworker issues only one outstanding request in its RDMA

3
15% of total local memory by default, but can be adjusted.

Algorithm 1 PF-aware dispatching

procedure DispatchReqs(workers, pendingRequests)
𝑟𝑒𝑎𝑑𝑦 ← 𝐸𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 ()
for all𝑤𝑜𝑟𝑘𝑒𝑟 ∈ 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 do

if 𝑤𝑜𝑟𝑘𝑒𝑟 .𝑖𝑠𝐼𝑑𝑙𝑒 () then
𝑟𝑒𝑎𝑑𝑦.𝑝𝑢𝑠ℎ𝐵𝑎𝑐𝑘 (𝑤𝑜𝑟𝑘𝑒𝑟 )

𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑂𝑟𝑑𝑒𝑟 ← 𝑆𝑜𝑟𝑡𝐵𝑦𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔𝑃𝐹𝐶𝑜𝑢𝑛𝑡 (𝑟𝑒𝑎𝑑𝑦)
while 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 .𝑖𝑠𝑁𝑜𝑡𝐸𝑚𝑝𝑡𝑦 () do

if 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑂𝑟𝑑𝑒𝑟 .𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () then return
𝑟𝑒𝑞 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠.𝑝𝑜𝑝𝐹𝑟𝑜𝑛𝑡 ()
𝑤𝑜𝑟𝑘𝑒𝑟 ← 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑂𝑟𝑑𝑒𝑟 .𝑝𝑜𝑝𝐹𝑟𝑜𝑛𝑡 ()
𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑤𝑜𝑟𝑘𝑒𝑟, 𝑟𝑒𝑞)

QP. In contrast, in Adios, each worker makes multiple out-

standing RDMA requests, allowing for greater concurrency

but also introducing the risk of load imbalance across RDMA

QPs. Even when the dispatcher evenly distributes requests

to workers in a round-robin manner [26, 28], the number of

RDMA requests can become uneven because not all requests

trigger page faults. Consequently, certain workers end up

temporarily handling a higher volume of page faults than

others. This burst of page faults experienced by a specific

worker leads to longer RDMA queue lengths than their peers,

leading to an increased RDMA latency due to queueing delay.

To mitigate the temporary page fault imbalance problem,

one can use load imbalance-mitigation policies, such as sin-

gle queueing and work-stealing. However, the single queue

policy for RDMA QPs degrades RDMA performance since it

limits NIC parallelism [29] and requires costly inter-thread

locking to access shared queue. Likewise, work-stealing is

infeasible because the RDMA QPs are hardware resources

handled by the NIC, which does not support work-stealing.

Therefore, we devise page-fault-aware (PF-aware) dis-

patching to resolve the temporary imbalance problem at

the dispatcher level (Algorithm 1). The core idea behind

the algorithm borrows the concept of congestion from net-

work load balancing. In congestion-aware load balancing

algorithms, packet steering is decided based on congestion

signals [3, 30, 31, 50, 62, 65]. Similarly, Adios uses the RDMA

QP’s length as an indicator of congestion and prioritizes less

congested workers. That is, the dispatcher selects workers

that have fewer outstanding page faults than others first and

dispatches requests to them. The dispatching algorithm miti-

gates the concentration of page faults to certain workers and

alleviates the long tail latency due to the queueing delay by

temporary page fault imbalance. To implement this dispatch-

ing algorithm, the scheduler has to access the information of

RDMA QPs used by the page fault handler, which is in the

kernel device driver. Adios implements this dispatching algo-

rithm without having huge overhead because the user-level

scheduler directly accesses the kernel-level QP information

exposed by the unikernel.
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Figure 6. Polling delegation mechanism

Polling delegation. To improve not just the page-fault

handling but also the end-to-end performance of networked

requests, Adios attends to the exit path of a request reply.

During a reply packet transmission, a worker should wait for

the completion of the transmission. Once the transmission

is complete, the worker informs the dispatcher to recycle

the packet buffer for subsequent requests. However, a naive

design of the transmission waiting mechanism introduces

another HOL blocking problem. If a worker busy-waits for a

response transmission completion, it blocks the opportunity

to process other requests from the dispatcher, leading to

similar problems caused by busy-waiting page fault handling

(§2.1).

In order to prevent the HOL blocking, each worker dele-

gates completion polling to the dispatcher. In the NIC’s CQ

(Completion Queue) and QP semantic, a CQ can manage

multiple QPs, and when an I/O event completes on a QP,

its completion event is raised to the associated CQ. Adios

leverages this semantic to redirect I/O completions to the

dispatcher. Figure 6 shows the polling delegation mechanism.

When a worker replies to clients, it issues a reply command

to its own QP (blue bubbles). After its transmission com-

pletes, Adios makes the completion notification raised in

the dispatcher’s CQ (blue diamonds) instead of using the

worker’s CQ, and the dispatcher receives the completion

notification via polling and recycles the buffer used by the

request. Using this mechanism, workers avoid busy-polling

in the response path. This mechanism introduces negligible

polling overheads to the dispatcher because the dispatcher

is already polling the CQ for incoming packets. Furthermore,

the dispatcher can batch handling of requests and response

completions.

4 Implementation
We have implemented Adios on the OSv unikernel version

0.55 [34]. Adios’ core is written in 8,396 LoC
4
of C, C++, and

assembly languages. The source code of Adios is available at

https://github.com/ANLAB-KAIST/adios.
RDMAand Ethernet networking. Adios’ computing node

utilizes both RDMA and user-space Ethernet networking

on top of unikernel. To use RDMA at the unikernel, Adios

reuses DiLOS’s libibverbs library, which employs the VMM-

bypass mechanism [41]. It maps the NIC’s MMIO and DMA

4
We use SLOCCount to measure LoCs.

regions to the VM’s physical memory, enabling direct access

to the NIC inside the VM. To support the user-space Ethernet

networking, Adios uses NVIDIA OFED’s Raw Ethernet fea-

ture [12]. Compared with the other popular kernel-bypassing

solutions [19, 33, 52], it has several advantages. First, since

the RawEthernet is a feature of libibverbs library, we can port

the feature to unikernel with a tiny modification on DiLOS’s

RDMA library. Second, it shares the same data structures

with the RDMA stack (e.g., ibv_mr, ibv_pd, ibv_cq, etc.).
For systems like Adios, which use both RDMA and Ethernet,

sharing the data structures simplifies implementation and

code path. Lastly, the Raw Ethernet feature’s CQ/QP seman-

tic is well aligned to the polling-delegation mechanism, as

we discussed in §3.4.

Load generator. To emulate a workload from a large num-

ber of clients, we have implemented an open-loop load gener-

ator similar to mutilate [38] and used a Poisson process. The

load generator also employs the Raw Ethernet feature to send

and receive packets, bypassing the kernel for low latency.

Apart from kernel-bypassing, the Raw Ethernet feature al-

lows efficient reads of the NIC’s hardware timestamps [6].

When the feature is turned on, the NIC records the times-

tamps of TX and RX at completion descriptors, and the load

generator computes the request-response latency by sub-

tracting the TX timestamp from the RX one.

5 Evaluation
In this section, we evaluate the performance of Adios using

microbenchmarks and real-world application workloads.

Testbed. We setup a computing node, a memory node, and

a load generator emulating clients. Two 100GbE Ethernet

cables connect the computing node with the memory node

and the load generator. Both the computing and memory

nodes have an Intel Xeon Gold 6330 CPU 2.00GHz, 256 GB

DDR4 3200 MHz memory, and an NVIDIA ConnectX-6 Dx

100GbE card (CX623106A) each. The load generator has an

Intel Xeon Gold 6226R 2.90GHz, 384 GB DDR4 2933MHz

memory, and an NVIDIA ConnectX-5 EDR + 100GbE card

(CX556A). The computing node runs on top of QEMU 4.2.1

and Ubuntu 20.04 with Hermit [48]’s modified Linux kernel

5.14. For all experiments, the load generator and the memory

node use Ubuntu 20.04 with Linux kernel 5.4. NVIDIA OFED

5.8 is used for all three nodes.

Setup. We configure all experiments to use eight worker

threads, one dispatcher thread, and one reclaimer thread. We

compare Adios with three baseline systems: Hermit (Hermit),
busy-waiting page fault handling (DiLOS), and busy-waiting

page fault handling with preemption (DiLOS-P). Hermit [48]

is a state-of-the-art kernel-based MD system, which adopts

asynchronous design in page fault handling but yet still relies

on busy-waiting as discussed in §2.3. The busy-waiting page

fault handling system is based on the original implementa-

tion of DiLOS [64], which employs busy-waiting to check
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Figure 7. Performance analysis of Hermit, DiLOS, DiLOS-P, and Adios. (a) shows P99.9 latency and (b) P50. (c) shows

performance breakdown of Adios’s request handling where the throughput is 1.3 MRPS. (d) and (e) show throughput and

network utilization of Adios and DiLOS.

the completion of page fetches. We also extend DiLOS to per-

form preemptive scheduling. Shinjuku [28] and Concord [26]

have demonstrated the advantages of preemptive scheduling

in the reign of microsecond-scale tail latency. Their preemp-

tive scheduling is based on inter-processor-interrupt (IPI)

or compiler-enforced cooperation with the default 5 𝜇s pre-

emption interval. We have tested DiLOS-P with the same

5 𝜇s interval and with both IPI and manually enforced co-

operation
5
. The latter required minor code modification but

has superior performance than the former with IPI. Thus,

we use DiLOS-P with manually enforced cooperation in our

evaluation. To validate our implementation of DiLOS-P, we
have run the same sets of “Shinjuku-SQ without Preemp-

tion” and “Shinjuku-SQ” on RocksDB from [28] and seen

comparable results. We have also considered other scheduler

designs [16, 46, 47] but dropped them from our evaluation

because they employ the run-to-completion model similar

to DiLOS. For fair comparisons, all the systems under testing

use 2MB huge pages for memory nodes and 4KB pages for

compute nodes. Since the original Hermit’s memory server

implementation uses 4KB pages only, we modified the mem-

ory server to employ 2MB huge pages for remote memory.

We also considered Infiniswap [21] for evaluations. How-

ever, it shows very high P99.9 latency (582 𝜇s to 73 ms) and

low throughput (261 KRPS), which are hard to include in

figures of relevant scales. Therefore, we exclude the results

for space and focus on comparisons between Hermit, DiLOS,

and Adios.

5.1 Microbenchmark
We begin our evaluation with microbenchmarks, the same

random index indirection workload, as in §2, now with all

four systems. Clients send requests with a random index of

an array, and the computing node reads and responds with

a value at the index. The size of the array is 40GB and the

computing node has 8GB local cache, which is 20% of the

total working set.

Latency. Figures 7(a) and 7(b) show the P99.9 and median

latency of Hermit, DiLOS, DiLOS-P, and Adios over a range

5
Humans rather than compiler insert probes for checking preemption.
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Figure 8. P99 latency of DiLOS and Adios with different

memory configurations. X% denotes the percentage of avail-

able local memory out of total memory use.

of throughputs. Thanks to the lightweight unikernel design,

DiLOS outperforms a general-purpose design (Hermit), offer-
ing 42× better P99.9 latency given 0.7 MRPS throughput and

1.29× higher peak throughput. Adios has improved the P99.9

latency by 2.83× when DiLOS’s latency starts to skyrocket

as 1.3 MRPS. The peak throughput is 2.11×, 1.58×, and 1.59×
better than Hermit, DiLOS, and DiLOS-P, respectively.
The source of Adios’s improved latency and throughput

over DiLOS is the dissolution of queuing delay induced by

busy-polling. Figure 7(c) breaks down the latency of Adios
when the throughput is 1.3 MRPS. Compared to DiLOS’s
latency breakdown in Figure 2(c), busy waiting has disap-

peared. The queuing delay has shrunk significantly: 16.3×
(P99) and 36.8× (P99.9). This evaluation result is the first

confirmation that Adios’s yield-based page fault handling is

effective.

In this evaluation, preemptive scheduling returns worse

performance than busy-waiting page fault handling: DiLOS-P
shows higher latency than DiLOS. With the local cache size to

cover 20% of the working set, the request service time (with-

out queueing delay) distribution is bimodal; 20% of local
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Figure 9. Latency comparison among TX mechanisms

cache access consumes 1.7 Kcycles or 0.85 𝜇s and 80% of

remote memory access consumes 10.6 Kcycles or 5.3 𝜇s (Fig-

ure 2(c)). Thus a preemptive scheduler with an interval of

5 𝜇s has very little room for enhancement and, even worse,

carries penalty of preemption overheads.

Adios does not always have better latency than DiLOS be-
cause the yield-based page fault handler requires additional

processing, such as context switches. When the throughput

is low, Adios has slightly higher P50, P99, and P99.9 latencies
than the busy-waiting page fault handler. However, their la-

tency differences are only a few hundreds of nanoseconds. We

conclude our yield-based PF handling brings in significant

improvement in latency and its comparable overhead under

low workload is justified.

Throughput. Figure 7(d) shows the throughput increase of

DiLOS and Adios as the offered workload increases. While

DiLOS’s throughput stalls after 1.5 MRPS, Adios steadily in-

creases until about 2.5 MRPS, providing 1.5× higher through-
put. In Figure 7(e) we plot the RDMA utilization under the

same setting as in Figure 7(d) and observe Adios’ RDMA

link utilization growing up to 82%.

These latency and throughput evaluation results in Fig-

ure 7 validate that yield-based page fetching not only enhances
latency but also throughput by addressing HOL blocking is-

sues and making full use of RDMA bandwidth.

Sensitivity to local DRAM size. In MD systems, local

DRAM size is critical to performance. To examine how re-

silient Adios is to local DRAM size compared to DiLOS, we
repeat the experiment with varying local DRAM sizes from

4GB (10% of total used memory) to unlimited (100%). Figure 8

shows its result. As local DRAM decreases from 100% to 10%,

Adios has only a 25% throughput reduction, whereas DiLOS
suffers from 60% degradation. Note that Adioswith only 10%
of local DRAM has a throughput similar to DiLOS with 80%

of local DRAM. This result shows that when memory ca-

pacity is scarce, HOL blocking becomes a severe bottleneck,

but yield-based page fault handling mitigates the impact.

When available memory is unlimited, Adios offers slightly
lower performance than DiLOS, from additional code path for

yielding (e.g., checking pages fetched before running new

unithreads and maintaining a list for yielded unithreads).

When no remote memory is used or no MD is configured,

Application Type Workload Mem. Modified

Memcached [14] KVS GET 40GB 71 LoC

RocksDB [24] KVS GET/SCAN 40GB 6 LoC

Silo [57] OLTP TPC-C [56] 20GB 24 LoC

Faiss [17] VectorDB BIGANN [27] 48GB 11 LoC

Table 2. Summary of real-world workloads

DiLOS whose code path is simpler achieves higher through-

put than Adios.
Effect of polling delegation. To evaluate the effect of

polling delegation, we measure the median and P99.9 la-

tency of Adios and Adios with polling delegation disabled.

Without polling delegation, Adios transmits packets in a

synchronous manner using busy-waiting. As shown in Fig-

ure 9, Adios has a 1.15× higher peak throughput compared

to the one without polling delegation. For latency, at the peak

throughput without polling delegation, 1,749 KRPS, polling

delegation improves P99.9 latency 8.05×.

5.2 Real-World Application Study
To evaluate the performance of Adios in real-world appli-

cations, we compare Adios with baseline systems in Mem-

cached [14], RocksDB [24], Silo [57], and Faiss [17] as summa-

rized in Table 2. For all applications, we add remote memory

flags in their mmap function calls. This modification requires

only a few lines of code changes
6
. To link the applications and

Adios’ request handler, we add 100-300 LoC for adapter for
each. The adapters parse requests and call related functions

in their applications. For all experiments, the computing

node has a local cache whose size is 20% of the total working

set.

Memcached. We port Memcached v1.6.21 to Adios, replac-
ing its original dispatcher and worker implementation [23]

with those from Adios for compatibility. We conduct two

experiments using value sizes of 128 and 1024 bytes. The key

size was set to 50 bytes, with approximately 40GB of total

memory usage and 8GB (20%) of local DRAM. Figures 10(a)

to 10(d) present the tail and median latency for Memcached

GET requests. For the 1024B workload, Adios achieves 1.60×
better median latency and 5.18× better P99.9 latency at 730

KRPS compared to DiLOS. In the 128B workload, Adios out-

performs DiLOS by 2.57× in median latency and 10.89× in

P99.9 latency at 750 KRPS. In terms of throughput, Adios
delivers 1.07× higher RPS for the 128B workload and 1.05×
higher RPS for the 1024B workload than DiLOS. However,
the improvements in throughput are modest in this experi-

ment. The primary reason is that the NIC could not match

the host’s processing power, leading to longer RDMA queues

that eventually reach full capacity. When the RDMA QPs are

saturated, page fault handlers must pause, waiting for avail-

able slots in the QPs, which causes the dispatcher to pause

and drop client requests. With the upcoming 200 and 400

6
For Silo, we measure LoC from Caladan-variant.
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(e) PF-Aware Effect (128B)

Figure 10. Memcached: P50 and P99.9 latency of 128B and 1024B GET workloads. For (e), 128B GET workload is used.

Hermit DiLOS DiLOS-P Adios RR PF-Aware

0 200 400 600
0

25

50

75

100

Throughput (KRPS)

La
te
nc

y
(𝜇
s)

(a) GET - P50

0 200 400 600
0

25

50

75

100

Throughput (KRPS)

(b) GET - P99.9

0 200 400 600
0

250

500

750

1,000

Throughput (KRPS)

(c) SCAN(100) - P50

0 200 400 600
0

250

500

750

1,000

Throughput (KRPS)

(d) SCAN(100) - P99.9

0 200 400 600
20

30

40

50

Throughput (KRPS)

P9
9.
9
La

te
nc

y
(𝜇
s)

(e) PF-Aware Effect (GET)

Figure 11. RocksDB: P50 and P99.9 latency of 99% GET and 1% SCAN(100) workload.
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Figure 12. Silo: P50/P99.9 latency of TPC-C workload
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Figure 13. Faiss: P50/P99.9 latency of BIGANN workload

Gbps RNICs [13], Adios will be able to achieve significantly

higher throughput without being constrained by the NIC.

RocksDB. We also conduct experiments with RocksDB, a

popular in-memory key-value store with advanced features

like scan operations. We select RocksDB because it has been

included in evaluations in many previous studies [16, 28].

We use RocksDB v8.3.2 for the experiments. To optimize

RocksDB for low latency, we use PlainTable [25] and mmap
mode, which makes RocksDB read data from remote memory

through load instructions and paging. We evaluate Adios’s

performance under the service time distribution with high

dispersion, where the preemptive scheduler performs well.

The load generator produces a bimodal workload, which

consists of 99% of GET and 1% of SCAN(100) requests. The

SCAN(100) request iterates over 100 keys starting from its

argument and reads values referenced by the series of keys,

thereby having a far longer service time. The exact ratio of

SCAN(100)’s service time to GET’s service time varies, for

example, from 25× to 100× when the value size is 1024B,

depending on the frequency of page faults triggered by the

SCAN(100) request. Figures 11(a) to 11(d) show the median

and P99.9 latency of GET and SCAN(100) requests. In DiLOS,
a SCAN(100) request causes a long blocking of subsequent

GET requests (HOL blocking), resulting in high P99.9 GET

latency. For this workload, preemptive scheduling reduces

the impact of HOL blocking. If processing a specific request

takes a while (SCAN), DiLOS-P preempts its execution and

handles other requests (mostly GET), improving the median

and P99.9 latency of GET requests. Even though preemptive

scheduling improves the latency of GET requests, Adios
provides better performance in both latency and throughput.

Overall, Adios offers 1.37×/7.61× better median/P99.9 GET

latency when throughput is 490 KRPS and shows 1.47× better
throughput than DiLOS. In comparison with DiLOS-P, Adios
offers 1.33×, 2.71×, and 1.34× better median GET latency,

P99.9 GET latency, and throughput, respectively.

Effect of PF-Aware Dispatching. Tomeasure the effective-

ness of our PF-aware dispatching algorithm, we compare our

dispatcher (PF-Aware) with a round-robin dispatcher (RR)
used in Shinjuku and Concord as a baseline. Figures 10(e)
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and 11(e) show the improvement introduced by PF-aware dis-

patching. Note that, for better readability, these two figures

are magnified and their vertical axes do not start from zero.

At all loads, PF-Aware has better P99.9 latency than RR. The
maximum improvement is 7.5% for Memcached and 27% for

RocksDB. These results confirm that PF-aware dispatching

alleviates temporal page fault imbalance across workers and

contributes to improved tail latency.

Silo. Silo is an in-memory transactional database (OLTP),

and we use Caladan-variant Silo [20]. The Caladan-variant

supports user-level threads, so we simply port it to Adios’s
unithreads. We extend Silo to support regular 4KB pages, as

the original implementation only supports 2MB huge pages.

Huge pages induces 512 times larger I/O amplifications than

4KB pages, seriously degrading page fetching latency. For

the workload, we use the TPC-C benchmark with a scaling

factor of 200 (about 20GB total working set in total) [56]. The

benchmark consists of five request types in the following

distribution: New-Order (44.5%), Payment (43.1%), Order-

Status (4.1%), Delivery (4.2%), and Stock-Level (4.1%). Fig-

ure 12 shows the median and P99.9 latencies of Silo on each

system. Adios has 4.66/3.85× and 2.24/2.26× better median

and P99.9 latency than DiLOS/DiLOS-P at about 140 KRPS

throughput. Adios also offers 1.67× higher throughput than

Hermit and 1.18× higher throughput than DiLOS/DiLOS-P.
Faiss. Faiss is a library for similarity searching and cluster-

ing dense vectors. Vector similarity searching and clustering

are widely used in datacenters to implement services such

as recommendation, image retrieval, and text retrieval [17].

We use Faiss v1.8.0 to run an in-memory vector similarity

search database. We utilize the IndexIVFFlat index in Faiss,

which is the fastest indexing method but consumes a sig-

nificant amount of memory [45]. To exhibit request-level

parallelism in Adios, we opt-out of default OpenMP and use

Adios’s MD scheduler to manage concurrent tasks. For work-

load, we load and query on the vector DB using BIGANN

dataset with 100M vectors (about 48GB memory consump-

tion in total) [27]. Figure 13 shows the median and P99.9

latency of vector similarity search requests. Compared to

other workloads, Faiss exhibits tens of milliseconds due to

its complex search steps. When throughput is about 500 RPS,

Adios shows 43.9/30.0× and 1.99/1.42× better median and

P99.9 latency than DiLOS/DiLOS-P. Also, Adios offers 5.51×,
1.64×, and 1.58× more throughput than Hermit, DiLOS, and
DiLOS-P. This result shows that Adios’s design also im-

proves systems whose request latency is tens or hundreds of

milliseconds.

6 Discussion and Limitations
Assumptions and target use cases. The main source of

performance improvement in Adios is from yield-based page

fault handling: executing other tasks during remote page

fetching. Therefore, Adios is beneficial if there are other tasks

to run during page fetching. That is, the target uses cases

of Adios are highly concurrent applications that use remote

memory substantially. For example, in-memory databases,

including key-value stores, OLTP systems, and vector DBs,

are typical target applications for Adios. Moreover, RPC ser-

vices that run memory-intensive business logic also can take

advantage of Adios. On the other hand, compute-intensive

or single or small threaded applications cannot gain perfor-

mance from Adios. Compute-intensive workloads utilize a

small amount of memory, and thus performance improve-

ment in remote memory has a limited impact on overall

performance. For single or small threaded applications, there

are no or few unithreads to execute during page fetching,

diminishing performance gains from yield-based page fault

handing. Nevertheless, even with such poorly suited appli-

cations, Adios does not introduce a very significant perfor-

mance degradation with respect to busy-waiting systems.

For example, in the evaluations under low load (e.g., through-
put under 0.5 MRPS in Figure 7(a)), the number of concurrent

threads to yield is zero or small, limiting the effect of yield-

based page fault handling. Adios has only 6% of P99.9 latency

increases compared to DiLOS in Figure 7(a) when throughput

is 0.2 MRPS.

Networking protocol support. Adios’ prototype currently
supports UDP-based applications similar to Shinjuku and

Perséphone. Networking protocol support is orthogonal to

our design. However, we expect our design to be valid with

TCP or other connection-oriented networking stacks if the

networking stacks provide microsecond-scale latencies simi-

lar to IX [9], TAS [32], ZygOS [47], and Shenango [46]. We

leave supporting more networking stacks as future work.

Limitations in scheduler. Adios is based on a cooper-

ative scheduler and inherits the limitations from this ap-

proach. In particular, cooperative schedulers may not handle

compute-intensive tasks fairly. Once a compute-intensive,

long-running task is scheduled, it runs until completion,

head-of-line blocking pending tasks. Also, the MD scheduler

currently has limited scalability due to single queueing. As

discussed in previous work [28], single queueing with a ded-

icated dispatcher thread can scale up to about ten worker

cores. We leave improving Adios for better scalability as a

future work.

Pinned threads. Adios employs two pinned threads (dis-

patcher and reclaimer) to guarantee low tail latency. How-

ever, thread pinning reduces the number of CPU cores for

applications, reducing their achievable throughput. We leave

designing a systemwithout the pinned threads while offering

tail latency increases as a future work.

7 Related Work
Memory disaggregation systems. There have been many

MD systems based on a paging system [4, 21, 44, 48, 54,
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61, 64], library or runtime [53, 59, 60, 67], or hardware fea-

tures [11]. Infiniswap initially introduced paging for mem-

ory disaggregation and employed yield-based page fault

handling. However, its kernel scheduler targets a few mil-

liseconds scheduling, and its context-switching overhead

is about 4 𝜇s [40], incurring huge overheads. To hide the

overheads, the paging-based systems have adopted busy-

waiting for page fault handling. AIFM also points out the

inefficiency of busy-waiting and implements MD as a li-

brary feature to avoid the inefficiency. Similar to ours, it also

adopts lightweight threads and issues I/O asynchronously.

However, since AIFM is implemented as a C++ library, it

has limited portability, compatibility, and generality than

Adios, a paging-based system. To the best of our knowledge,

Adios is the first system that co-designs a scheduler and ker-

nel to build yield-based page fault handling at a single-digit

microsecond-scale.

Microsecond-scale schedulers. A series of studies have

proposed microsecond-scale schedulers to address their chal-

lenges. ZygOS emphasizes the role of schedulers in handling

microsecond-scale networked tasks and introduces a work-

stealing scheduler, which achieves lower tail latency than

parallel shared-nothing models [47]. Shinjuku demonstrates

that single queue policy and preemptive scheduling further

improve the tail latency when request service time distri-

bution is highly dispersed [28]. Perséphone proposes a dy-

namic application-aware reserved cores (DARC) scheduling

policy to guarantee low tail latency of short service time

requests [16]. Shenango focuses on the CPU efficiency of

a microsecond-scale scheduler and enhances the efficiency

without sacrificing throughput or tail latency [46]. Caladan

extends the Shenango scheduler to mitigate interference

among applications through fast core allocation [20]. Instead

of using preemption and work-stealing, Adios utilizes yield-

based page fault handling to address HOL blocking problems

in MD.

Unikernels and Library OSes. Adios is based on a uniker-

nel, OSv [34]. However, any unikernel or library OS can be

used to implement the design idea of Adios as long as it

is based on a single address space and a single protection

domain. There aremany unikernels following the design [35–

37, 43, 51]. In particular, stack designs of UKL (Unikernel

Linux) and Adios share similar properties: kernel and user

data are merged in a single stack [51]. However, since UKL

utilizes the stacks of OS threads, each OS thread handles only

one page fault concurrently and must be context switched to

other OS threads to handle other requests. Adios, in contrast,

stores the data into unithread’s universal stack, and thus

OS threads only need to switch unithreads to handle other

requests, enabling multiple page fault handling within an

OS thread. In addition to unikernels, several library OSes

enable user-level applications to do paging for enhanced

performance [8, 18, 22]. Exokernel allows applications to di-

rectly control hardware resources (e.g., page tables), enabling

application-specific customization of traditional operating

systems [18]. Nemesis empowers the user-level scheduler to

handle page faults for better Quality of Service (QoS) [22].

Dune leverages hardware virtualization features for perfor-

mance and security improvements in user-level paging [8].

8 Conclusion
In this paper, we identify the performance pathologies of

modern MD systems and design a novel MD system Adios.

Adios implements a yield-based page fault handling with

lightweight unithreads in unikernel and deliversmicrosecond-

scale tail latency. Our evaluation demonstrates that Adios

outperforms an existing state-of-the-art busy-waiting MD

system (DiLOS) by up to 1.07×, 1.47×, 1.18×, and 1.64× in

throughput; and 10.89×, 7.61×, 2.24×, and 1.99× in P99.9 la-

tency for Memcached, RocksDB, Silo, and Faiss respectively.
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