
DiLOS: Adding Performance to Paging-based
Memory Disaggregation

Wonsup Yoon
KAIST

wsyoon@kaist.ac.kr

Jinyoung Oh
KAIST

jinyoungoh@kaist.ac.kr

Jisu Ok
KAIST

jisu.ok@kaist.ac.kr

Sue Moon
KAIST

sbmoon@kaist.edu

Youngjin Kwon
KAIST

yjkwon@kaist.ac.kr

ABSTRACT
Memory disaggregation places computing and memory in
physically separate nodes and achieves improved memory
utilization in datacenters. Kernel-based approaches for mem-
ory disaggregation offer transparent virtual memory by us-
ing paging schemes but suffer from expensive page fault
handling. As an alternative, library-based approaches incor-
porate application semantics to memory disaggregation and
can even eliminate page fault handling on its data path. How-
ever, its lack of compatibility harms generality and obstruct
wide adoption.

This paper revisits the paging-based approaches and chal-
lenges their performance. We posit that the page fault over-
head is not a fundamental limitation. We propose DiLOS, a
new memory disaggregating unikernel, that delivers both
performance and generality. The key insight of DiLOS to
overcome performance drawbacks while maintaining gen-
erality lies in the design of a fast, lightweight page fault
handler on top of the unikernel’s simple execution model.
Since each unikernel serves a single application, it also opens
room for extra optimization via app-aware prefetching. Di-
LOS outperforms a recent library-based system (AIFM) by
1.52× and 1.31× when the cache size is 12.5% and 100% of
the total working set, respectively. Compared to the state-
of-the-art paging-based system (Fastswap), DiLOS with a
general-purpose prefetcher achieves up to 2.2× higher per-
formance in real-world workload. An app-aware prefetcher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
APSys ’21, August 24–25, 2021, Hong Kong, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8698-2/21/08. . . $15.00
https://doi.org/10.1145/3476886.3477507

further improves the throughput of Redis in-memory data-
base up to 27%.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing.

KEYWORDS
memory disaggregation, disaggregated data center, unikernel
ACM Reference Format:
Wonsup Yoon, Jinyoung Oh, Jisu Ok, SueMoon, and Youngjin Kwon.
2021. DiLOS: Adding Performance to Paging-based Memory Disag-
gregation. In 12th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys ’21), August 24–25, 2021, Hong Kong, China. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3476886.3477507

1 INTRODUCTION
Resource disaggregation is a new hardware and system par-
adigm to split computation, memory, and storage into indi-
vidual resource pools. Compared with the traditional single-
machine design, resource disaggregation allows independent
scaling and flexible resource provisioning beyond the bound-
ary of a single machine. The benefits are a key driver to
solve the chronic resource under-utilization problem in dat-
acenters [13, 43, 46]. Cloud service providers are building
disaggregated datacenters (DDC) to take full advantage of
resource disaggregation [25].

Memory disaggregation aims to split computing and mem-
ory in the DDC, placing computing and memory in phys-
ically separate nodes. A computing node has a large num-
ber of computational units, while a memory node provides
a large amount of memory with few or no computational
units. Memory disaggregation enables building a large mem-
ory pool shared across compute nodes and overcomes the
memory wall in the cluster of traditional server nodes [2,
12, 32, 43]. Fast networking technologies such as RDMA
and userspace networking have reduced the remote access
latency [45] and accelerated the trend towards memory dis-
aggregation.

70

https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3476886.3477507
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3476886.3477507&domain=pdf&date_stamp=2021-08-24

APSys ’21, August 24–25, 2021, Hong Kong, China Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon

Early efforts to adopt memory disaggregation have mostly
built it as a kernel feature [2, 12, 25, 32, 43]. These kernel-
based approaches recast the existing kernels to migrate pages
between the computing node and the memory node. Comput-
ing nodes evict pages to memory nodes under memory pres-
sure, unmap them in their page table, and fetch them back
on page faults. Since paging changes the address mapping
behind the scene, applications use disaggregated memory
without modification.

The compatibility of the kernel-based approaches, how-
ever, comes with a cost. Frequent kernel-user switching in-
curs non-negligible performance overhead, and semantic
gaps between pages and actual units of access remain as
opportunities for performance improvement. To overcome
these limitations, library-based approaches incorporate ap-
plication semantics to memory disaggregation. AIFM [40]
puts user-level libraries in charge of remote memorymanage-
ment to avoid page faults. Semeru [47] reduces the number
of page faults and network bandwidths by offloading garbage
collection to its memory node. Yet library-based approaches
trade compatibility for performance. AIFM’s programming
model requires annotations for remote objects and mandates
custom C++ API. Semeru only supports JVM-related pro-
gramming languages.
We look back at the burden of the kernel-based model:

Are the costly switching overheads and lack of application
knowledge fundamental limitations of paging? We rehash
existing attempts to relax the mode switching overhead and
the semantic gap, built on top of kernel abstraction. Dune [7]
runs user processes in non-root ring-0 mode while the un-
derlying OS runs in the root mode, allowing the user pro-
cesses to manage paging directly. Unikernels [28, 29] break
the boundary between a kernel and a process and integrate
them together so that all software stack runs in ring-0 mode.
Both approaches eliminate the kernel-user mode switching
in paging, for processes themselves and page fault handling
all run in ring-0 mode. Nevertheless, unikernels have a nar-
rower attack surface and provide more robust isolation than
Dune-like approaches, thus more suitable for datacenter en-
vironments. Moreover, unikernels open doors for additional
improvements by leveraging application semantics; tailoring
a kernel to an application includes optimization on paging
techniques such as app-aware prefetching. In this work, we
propose a unikernel-based memory disaggregation system
that offers both performance and compatibility: DiLOS (Dis-
aggregated Library Operating System). It is paging-based,
but its page fault handler is void of mode-switching over-
head. It incorporates known techniques for performance
optimization, such as prefetching, background write-back,
and fast RDMA communication. Our system supports POSIX
and compatibility follows. In addition, DiLOS exploits ap-
plication semantics in the form of a prefetching guide. The

Figure 1: The x-axis is in 𝜇𝑠. The performance break-
down shows page fetching takes up 47.3% of latency.

prefetchers take the guide as a cue for further performance
improvement over general-purpose prefetchers.
To evaluate our claim, we implement DiLOS on an open-

source unikernel, OSv [17], and compare it with the library-
based system, AIFM, and the kernel-based system, Fastswap.
We run the same workload from AIFM and compare the per-
formance. When a compute node has 12.5% and 100% of the
total working set, DiLOS performs 52% and 31% better than
AIFM, respectively, even without modifying applications.
Against Fastswap, DiLOS demonstrates up to 2.2× superior
performance in real-world workload. In addition, DiLOSwith
app-aware prefetcher achieves up to 27% higher throughput
in Redis than DiLOS with a general-purpose prefetcher pro-
posed in recent work [32]. These results demonstrate that
with the simple abstraction and careful engineering on a
lightweight platform, DiLOS offers a competitive and viable
solution for memory disaggregation.

2 MOTIVATION
Existing kernel-based systems take a reactive approach in
remote memory access: when a page not in local memory
raises an explicit page fault, the OS (or hypervisor) fetches the
page in response to the page fault. On the contrary, AIFM [40]
takes a proactive approach: it checks whether an object is in
local or remote memory when dereferencing its pointer. This
approach eliminates page faults in the data path and promises
good performance. However, AIFM forces programmers to
use their APIs and annotate objects. To justify their design
choices, AIFM points out that the kernel-based model has
two fundamental drawbacks: cost of page faults and lack of
application semantics.
Cost of page faults. To understand the cost in kernel-based
systems, we conduct a performance breakdown (Figure 1).
The latency coming from hardware, such as raising and
returning page fault exceptions, takes up only 10.2% (0.67
𝜇seconds) out of total page fault handling latency. The domi-
nant fraction of latency comes from software cost originating
from Linux: large room for performance improvement.

71

DiLOS: Adding Performance to Paging-based Memory Disaggregation APSys ’21, August 24–25, 2021, Hong Kong, China

Unikernels assume a single process environment with a
simple physical memory layout. Compared to Linux, uniker-
nels do not need a complicated virtual address and physi-
cal memory management, inter-process resource controls,
and namespace-based confinement. All page faults occur
within a process, and the page fault handler does not require
inter-process security checks and locks. These optimizations
reduce the handling latency close to the physical hardware
limit.
Lack of application semantics. AIFM uses intrusive se-
mantic hints to optimize policies for fetching and evicting
remote pages, such as fine-grained hotness tracking, prefetch-
ing, and detecting non-temporal accesses. Though unikernels
are not as rich in features as the intrusive approach, zero
cost in application-kernel switching and the highly customiz-
able kernel (library OS) allows applications to leverage their
domain knowledge in customizing prefetchers. Our DiLOS
provides APIs to customize a prefetcher.
This work aims to demonstrate that it is feasible to have

very low-cost page faults and at the same time utilize appli-
cation semantics without any application modification.

3 DESIGN AND KEY COMPONENTS
DiLOS is a paging-based memory disaggregation system
built on a unikernel. DiLOS provides fast remote memory
access without modifying existing applications. In this sec-
tion, we present the design and key components of DiLOS.
We first describe the design overview of DiLOS (§3.1) and
elaborate on key components: the page fault handler (§3.2),
the prefetcher (§3.3), the page manager (§3.4), the communi-
cation module (§3.5), and the memory server (§3.6). Lastly,
we discuss app-aware prefetching (§3.7) and compatibility
of DiLOS (§3.8).

3.1 Design Overview
DiLOS consists of the four key components (fast page fault
handler, prefetcher, page manager, and communication mod-
ule) running on a computing node and a memory server on a
memory node. On a computing node, local physical memory
works as cache for remote memory similar to many mod-
ern disaggregated systems [2, 12, 25, 32, 43]. In the memory
node, a memory server process reserves memory and han-
dles memory requests from computing nodes. Figure 2 shows
the system overview of DiLOS’s computing node. The kernel
is a library operating system containing the application in
the same address space. The application interacts with the
kernel over POSIX system calls. Thus DiLOS supports con-
ventional application binaries compiled from any language.
An application contains an app-aware prefetching guide. The
guide uses the application’s domain knowledge to provide
semantic hints for prefetching. When a customized guide

Kernel Part

Main Code Prefetching Guide

Page ManagerPrefetcher

Direct Mapper

RDMA Backend Driver

Communication
Module

RDMA NIC

Device Driver

VMM-bypass
Data Path

General Algorithm

Page Fault
Handler

RDMA Frontend Driver

Control
Path

PTE Hit Tracker

Reclaimer

Allocator

CleanerUnified
Page Table

VM
Host

Application Part

Figure 2: DiLOS system overview

is absent, DiLOS uses a recently proposed general-purpose
prefetcher [32]. The guide is in the form of a third-party
library, which does not require any modification to the ap-
plication’s main code.

3.2 Fast Page Fault Handler
The key idea behind reducing the page fault latency is to
overlap page fault handling and asynchronous network re-
quests. We move the expensive parts in page fault handling,
such as permission checks and page reclaims, after the net-
work request so that they are handled while the network
request is being served.

We combine the local and remote page tables to a unified
page table and store all the information (e.g., remote address)
needed to fetch pages from a memory node. It translates an
application’s virtual address to local physical memory or a
remote address according to the data location. For local cache,
DiLOS follows the Intel page table structure for efficient
memory access. For other cases, DiLOS marks the present
bit in the page table entry (PTE) to zero. DiLOS also marks
the writable bit for the remote address and the user bit for
protection to distinguish an unallocated case. DiLOS uses the
remaining bits to embed the remote address and protection
information. Later, when the application accesses a virtual
address associated with the PTE, a page fault occurs. Then,
DiLOS walks the unified page table and reads the embedded
information. If the PTE is a remote address entry, DiLOS
fetches its page from the memory node. For protected PTEs,
which means there is an outstanding fetch request, the page
fault handler waits for its completion.

72

APSys ’21, August 24–25, 2021, Hong Kong, China Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon

3.3 Prefetcher
Prefetching is a common yet integral mechanism to hide
inevitable hardware latency and network roundtrip time.
DiLOS’s prefetcher reduces overheads in prefetching stack
by bypassing the swap cache. The swap cache is a core data
structure in Linux’s swap system. It stores all prefetched
pages and provides statistical information, such as the hit
ratio and the access history. Modern prefetchers (e.g., reada-
head [14] and Leap [32]) use the statistics to determine the
prefetching window size. However, the swap cache design
incurs a large number of minor page faults, limiting overall
performance. When a prefetching page arrives, Linux stores
it in the swap cache. When the application accesses the page,
minor page fault occurs, and the page fault handler maps the
page in the swap cache. Also, it tracks the minor page faults
to gather statistical information.
DiLOS cuts down on page faults during prefetching via

skipping the swap cache. Instead of storing prefetched pages
into the swap cache, it directly maps them to the page table.
This design reduces the number of page faults and saves the
swap cache lookup latency.
However, bypassing the swap cache also skips gathering

statistical information. DiLOS has another way to track the
statistics: a hit tracker. Upon prefetching, the hit tracker
directly reads accessed bits in the page table entries and
stores accessed addresses in access history. Then, it uses the
information to induce hit ratio.

3.4 Page Manager
When local memory has no room to allocate new pages, Di-
LOS evicts pages in the local DRAM to the memory node.
The design goal of DiLOS’s page manager is cooperative
execution of eviction path and fault handler. It hides its evic-
tion latency to the window of fetching a page. Page eviction
happens by two modules in a background thread: a cleaner
and a reclaimer.
When the page fault handler requests pages for local

DRAM, the page manager allocates free pages. The page
manager inserts the pages into the LRU list and marks them
evictable. The cleaner periodically scans the LRU list from its
tail. If it finds dirty pages (dirty bits in their page table entries
are set), it writes them back (no eviction) to the memory node
and clears the dirty bits. When the system is under mem-
ory pressure, the reclaimer evicts the least recently cleaned
and not-accessed pages first because clean pages are sim-
ply discarded. If there exists no cleaned page, the reclaimer
evicts pages according to the clock algorithm. We observe
that the cooperative execution of the page fault handler, the
cleaner, and the reclaimer enables the latency of performing
page management to be completely hidden within the time
window of fetching a page.

3.5 Communication over RDMA
RDMA is the state-of-the-art communication channel for
memory disaggregation. However, to use RDMA in uniker-
nels, we should port an RDMA driver. We have considered
PVRDMA [37] and HyV [36], but using them requires a non-
trivial effort. Instead, we have built our own RDMA driver
borrowing VMM-bypass [27]’s concept: reusing VMM’s con-
trol path and bypassing VMM in data path.

RDMA has two paths: a control path for managing RDMA
resources and a data path for transferring data. DiLOS and
other disaggregated systems use the control path only at
the initialization stage for establishing connections between
computing nodes and memory nodes. Thereby, we conclude
that the control path does not have to be fast and reuse an
RDMA driver in the hypervisor (Linux). If the RDMA fron-
tend driver receives RDMA control requests, it delivers them
to the RDMA backend driver on the host side via virtualized
device (virtIO). Then, the backend driver translates addresses
in the requests to map an MMIO region. After the mapping,
DiLOS issues requests to the RDMA NIC (RNIC) using the
MMIO region without the driver’s intervention.

3.6 Memory Server
Our memory node runs a memory server as a process. It
reserves memory using 1GB huge TLB pages and registers
them as RDMA memory regions. Huge pages reduce cache
misses in the RDMA NIC; thus, they reduce the number of
address translations in the NIC [49].

3.7 App-aware Prefetching Guide
To improve performance in memory disaggregation, uniker-
nels can incorporate an application’s semantics to customize
the kernel’s operations. Traditional OS has non-negligible
costs at the time scale of handling page faults and exchang-
ing pages over network. For example, a Linux upcall latency
to invoke a user-level handler takes 2-3 𝜇seconds [4, 10],
whereas a single page fault takes 3-4 𝜇seconds. In unikernels,
on the other hand, the costs of system calls and upcalls are
the same as function calls so that an application can spec-
ify user-level policies requiring frequent communication
between the application and the kernel.

DiLOS provides upcall/downcall interfaces for prefetching
guide, and the guide hooks application’s domain knowledge
to customize its prefetching algorithm via the interfaces. If
a page fault happens, the page fault handler issues a fetch
request to the communication module. During fetching, the
handler issues an event with the faulting address and statis-
tics to the guide. Upon receiving the event, the guide uses
application semantic to inform the prefetcher what data to
prefetch.

73

DiLOS: Adding Performance to Paging-based Memory Disaggregation APSys ’21, August 24–25, 2021, Hong Kong, China

However, the application is agnostic to the notion of the
page. From the application’s standpoint, data represents a
virtual address and a size. To fill the semantic gap, DiLOS
supports subpage prefetching. Subpage prefetching is used
when an app-aware guide quickly needs a small amount
of data (not whole page) in a memory node, accelerating
prefetch decisions.

Moreover, the prefetching guide is a shared object module,
it does not require application modification, and DiLOS links
it with the application on runtime if needed.

3.8 Compatibility
To preserve compatibility, DiLOS uses Linux ABI and POSIX-
compliant interfaces. Moreover, to support unmodified off-
the-shelf application binaries, DiLOS patches the symbol
table of the binary to use the DiLOSmemory allocator. DiLOS
has ddc_malloc and a custom ELF loader. The ddc_malloc
is a drop-in replacement of default memory allocator to let
DiLOS identify memory pages that can be evicted to a remote
memory server. During loading an application binary, DiLOS
ELF loader links malloc in PLT and GOT sections to the
ddc_malloc, making application use disaggregatedmemory.

4 IMPLEMENTATION
We build DiLOS on top of OSv [17]. DiLOS is written in 5,085
lines of C/C++ code1. We also modify 576 lines in OSv to link
with DiLOS and 880 lines in QEMU to implement the RDMA
backend driver. The memory node consists of 457 lines of
code. DiLOS has two general-purpose prefetchers: Linux’s
VMA-Readahead algorithm [14] and Leap’s majority trend-
based algorithm [32]. To overcome the semantic gap, DiLOS
also provides an app-driven prefetcher for Redis, described
in §5.2.
We also optimize RDMA configuration. DiLOS posts re-

quests using WQE-by-MMIO, which reduces latency with
the cost of bandwidth [15]. To support the WQE-by-MMIO,
we fix OSv to use a write combining buffer.
Limitations. Since DiLOS is based on OSv unikernel, it in-
herits limitations on the unikernel. Though OSv uses Linux
ABI and runs unmodified Linux binaries [18], it lacks sup-
ports for applications usingmulti-process APIs such as fork(),
vfork(), and clone(). Like Fastswap and AIFM, the current
implementation does not include a fault tolerance mecha-
nism when a memory node fails. To provide fault tolerance,
it is possible to employ Infiniswap’s mechanism [12], which
persists evicted pages to local storage asynchronously.

5 EVALUATION
In this section, we evaluate DiLOS over the state-of-the-
art implementations. As a result, DiLOS outperforms AIFM
up to 1.52× and Fastswap up to 2.2×. Moreover, app-aware
prefetcher improves in-memory key-value store performance
27% further.

5.1 Comparison with the State-of-the-Arts
To show the performance enhancement of our design, we
compare DiLOS with the state-of-the-art memory disaggre-
gation implementations, both library-based (AIFM [40]) and
kernel-based (Fastswap [2]).
Since AIFM and its benchmarking suites require appli-

cation modifications and a Shenango runtime [35], which
does not run on unikernels, it is difficult to compare DiLOS
with AIFM directly. Therefore, for a fair comparison with
AIFM, we resort to the only real-world workload already
instrumented in the evaluation of AIFM, DataFrame [33].
We leave it as future work to port the entire suite of AIFM’s
benchmark into the DiLOS environment and conduct a more
rigorous analysis.
Testbed. Our experimental testbed consists of a computing
node and a memory node. Each node has two Intel E5-2670
v3, DDR4 RAM (110G for computing node and 440G for
memory node), and single Mellanox CX556A EDR/100GbE
card. A 100GbE cable connects the two nodes. We use OSv
0.55, QEMU 4.1.1, and Mellanox OFED 5.0 on top of De-
bian 10 (Linux 4.19) for DiLOS. Due to compatibility issues,
Fastswap runs on Ubuntu 16.04 (Linux 4.11) and Mellanox
OFED 4.3, and AIFM runs on Ubuntu 18.04 (Linux 5.0) and
Mellanox OFED 4.6. All AIFM’s compute offloading features
are disabled. To limit available local memory size, we use
LXC container for Fastswap, kCacheGBs constant for AIFM,
and m parameter of QEMU for DiLOS. Our remote memory
server uses 1GB huge pages. Thus, we modify Fastswap’s
remote memory server to use 1GB huge pages for a fair
comparison. All implementations except for AIFM use RoCE
RDMA. We tried to port AIFM to use RDMA rather than
using TCP, but it worsens performance. We suspect there
is a scalability problem of RDMA NIC since AIFM spawns
hundreds of connections for parallel requests. Therefore, we
use the original AIFM using TCP for experiments.
Data analytic application. We evaluate the end-to-end
performance of DiLOS compared to AIFM and Fastswap. We
run a data analytic application, DataFrame [33], on each
system and use the New York City taxi trip analysis work-
load [16] as AIFM does. In our testbed configuration, this
workload requires about 40GB of peak memory usage, and
thereby we limit the size of local cache to 20GB, 10GB, and
1We use SLOCCount (for new) and git (for modification) to measure lines
of code

74

APSys ’21, August 24–25, 2021, Hong Kong, China Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon

fastswap aifm no-prefetch readahead trend-based app-aware

12.5% 25% 50% 100%
0

100

200

Available Memory

C
om

pl
et
io
n
T
im

e
(s
)

(a) Dataframe

12.5% 25% 50% 100%
0

100

200

Available Memory

(b) GAPBS (PR)

12.5% 25% 50% 100%
0

50

100

150

Available Memory

(c) GAPBS (BC)

12.5% 25% 50% 100%
0K

2K

4K

Available Memory

T
hr

ou
gh

pu
t(
R
PS

)

(d) Redis (LRANGE)

Figure 3: Performance comparison among Fastswap [2], AIFM [40], DiLOS without prefetcher, DiLOS with Reada-
head prefetcher [14], DiLOS with majority trend-based prefetcher [32], and DiLOS with app-aware prefetcher.

5GB. We used the DataFrame source code provided and used
by AIFM, publicly available in [39].

Figure 3a shows the total completion time of theDataFrame
application on each system.When the local cache size is large
enough (i.e., there is no need to use remote memory), DiLOS,
as well as Fastswap, is 30% faster than AIFM. This gap stems
from preserving memory abstraction in the kernel while
AIFM proactively checks every pointer before dereferences
regardless of the use of remote memory. As the local cache
size decreases, the performance of Fastswap drops dramat-
ically (184% slowdown) due to frequent page faults. AIFM
reduces the slowdown by avoiding page faults, and it shows
1.44× higher performance than Fastswap when there is 12.5%
of required memory in local. DiLOS, on the other hand, ob-
tains comparable completion time to AIFM even without
any prefetching. With general-purpose prefetching, DiLOS
outperforms AIFM by 33%.
The results demonstrate that DiLOS achieves even bet-

ter performance than AIFM for particular workloads. We
conjecture that three factors contribute to this. First, since
DiLOS reduces page fault overheads as much as possible, it
rivals AIFM, which has zero page fault cost. Second, R/W
amplification does not happen in DataFrame. DataFrmae’s
core data structure, DataFrame, is just a collection of vectors
and thus has high spatial localities. Lastly, AIFM’s communi-
cation between computing node and memory node is based
on TCP. Even if we use the same hardware and layer-2 pro-
tocol (Ethernet), we find that AIFM’s TCP stack throttles the
eviction and fetching performance compared to RoCE.
Graphprocessing application. WeuseGAPBS (GAPBench-
mark Suite) [6] to evaluate our implementations on multi-
threaded application workload. We use two representative
algorithms, page rank (PR) and betweenness centrality (BC),
with the Twitter dataset [22]. These workloads have about
17GB of the total working set. We use GAPBS 1.3, which
is the lastly released version. For all experiments, we limit

the number of threads to 4 using OMP_NUM_THREADS and lo-
cal cache to 14.0GB (100%), 7.0GB (50%), 3.5GB (25%), and
1.75GB (12.5%).

Figure 3b and Figure 3c show the completion time of each
implementation. Unlike other experiments, DiLOS has a 22-
25% performance drawback under 100% (14GB) local cache
condition. It is because OSv has a scalability problem of
synchronization methods. However, under 12.5% (1.75GB)
local cache, DiLOS has a little higher performance on PR and
up to 1.80× faster performance on BC.
In-memory key-value data store application. We con-
duct a performance evaluation using Redis, a popular in-
memory key-value store [41]. In applications such as Redis,
the memory access pattern is highly unpredictable due to
their underlying pointer-based data structures. We use Re-
dis 5.0.7, the latest stable version at the time of the experi-
ments. We turn off Redis’s disk-related features such as AOF
and RDB to isolate memory-related performance from disk-
related tasks. We also turn off Redis’s eviction to overcommit
memory and induce eviction to remote. We evaluate the per-
formance of DiLOS with 20GB (100%), 10GB (50%), 5GB (25%),
and 2.5GB (12.5%) local cache.
We use LRANGE workload [24] for the benchmark. It uses

a quick list data structure, which stores strings in a linked-
list [44]. It is heavily used to deal with sequential data such
as thread conversation [9, 42]. We evaluate LRANGE_100 per-
formance with redis-benchmark [23], which retrieves the
front 100 elements from a list. Since vanilla redis-benchmark
uses only one list, which is not realistic in modern datacen-
ters, we modified it to use 100 thousand lists. To populate
the lists, we pushed 20 million elements (about 20GB) to the
lists randomly. Then we send LRANGE operation 100K times.

Figure 3d shows performance improvements in Redis. For
all experiments, DiLOS outperforms Fastswap. DiLOS, even
without any prefetcher, has up to 1.39× higher throughput
than Fastswap. However, general-purpose prefetchers do not

75

DiLOS: Adding Performance to Paging-based Memory Disaggregation APSys ’21, August 24–25, 2021, Hong Kong, China

PG#1Application DiLOS RNIC
Page fault

Fetch PG#1Upcall

Fetch SubPG#1

SubPG#1 fetched

Fetch PG#2,3,4
Prefetching
Node #2,
Ziplist #1

Prefetching
Node #1

PG#4

Fetch SubPG#2

PG#3

PG#6PG#5

PG#2

*next
*ziplist

*next
*ziplist

#4#3#2#1

#8#7#6#5SubPG#2 fetched

…

Node#1 Node#2

Figure 4: Quick List Prefetcher. PG and SubPG mean
page and subpage, respectively.

improve LRANGE performance where the access pattern is
irregular. readahead enhances throughput only 0.5% and
trend-based somewhat worse performance 1%.

5.2 App-aware Prefetcher
To show how DiLOS uses application semantic, we add an
LRANGE prefetching guide to enhance Redis’s performance
further. The prefetching guide decides pages to retrieve using
hints from Redis’s data structures.
Redis’s LRANGE returns a set of objects from a list. For

example, LRANGE list 0 100 returns objects from index 0
to 100 in list. The range parameter is a good hint for which
pages should be prefetched. When a range query request
arrives, the prefetching guide is invoked on a page fault, and
it traverses and prefetches list nodes of the specified range.
Because list nodes are not always contiguously allocated,
sequential prefetcher does not predict them correctly. On the
other hand, the guide collects required objects to be fetched
and informs DiLOS to prefetch the objects precisely.
Figure 4 shows app-aware prefetching on range query.

When a page fault raises, the prefetcher fetches its list node
(subpage #1) along with page #1. After the subpage fetch-
ing is complete, the prefetcher fetches pages associated with
ziplist (page #3,4) and the next entry (page #2). The prefetcher
does this iteratively until the last item requested in the query.

Figure 3d shows overall performance improvements of the
app-aware prefetcher. While general-purpose prefetchers
do not have any performance improvement compared to
no-prefetch, the app-aware prefetcher improves DiLOS’s
performance up to 26%.

6 RELATEDWORK
Memory disaggregation systems. Many memory disag-
gregation systems have been proposed. Kernel-based sys-
tems using swap device [1, 12], frontswap [2, 25, 32], and

split kernel [43] have been proposed to run existing applica-
tions. Library-based systems have been introduced recently
to exploit application semantic such as GC structure [47] and
access pattern [40]. DiLOS uses a unikernel approach, which
runs unmodified applications without huge overheads and
uses application semantic to tune prefetcher.
Unikernels. Since unikernel was first introduced [28], re-
searchers have proposed two kinds of unikernels: POSIX-
based and language-based. The first one aims to support Unix
applications on a unikernel. For example, OSv [17] and Her-
miTux [34] build new unikernels to support Linux binaries,
Lupine [21] and UKL [38] convert Linux kernel to unikernel,
and Unikraft [19] generates specialized POSIX-compatible
unikernels automatically. Language-based unikernels [3, 8,
11, 28] offer a language-specific interface to build a unikernel
instance. Researchers also have introduced various systems
using unikernel for NFV [20, 31], instant booting [30, 48],
enclave [5], and HPC [26]. We choose OSv unikernel that is
mature enough and supports unmodified Linux binaries.

7 CONCLUSION
This paper claims unikernels are a promising platform for
memory disaggregation. Without compromising compati-
bility, DiLOS demonstrates superior performance than the
user-level approaches (52%) and other kernel-level systems
(120%).

ACKNOWLEDGMENTS
This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT). (2019M3F2A1072211 and 2019R1A2C2008439)

REFERENCES
[1] Mellanox Accelio. nbdX. https://github.com/accelio/NBDX.
[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy

Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. Can Far Memory Improve Job Throughput? In
Proceedings of the Fifteenth European Conference on Computer Systems,
EuroSys ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[3] Fran. J. Ballesteros. Clive. https://lsub.org/clive/.
[4] Mike Battersby and Michael Kerrisk. sigaction. http://man7.org/linux/

man-pages/man2/sigaction.2.html.
[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applica-

tions from an untrusted cloud with Haven. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages
267–283, Broomfield, CO, October 2014. USENIX Association.

[6] Scott Beamer, Krste Asanović, and David Patterson. The GAP Bench-
mark Suite, 2017.

[7] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. Dune: Safe User-level Access to
Privileged CPU Features. In 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 12), pages 335–348, Hollywood,
CA, October 2012. USENIX Association.

76

https://github.com/accelio/NBDX
https://lsub.org/clive/
http://man7.org/linux/man-pages/man2/sigaction.2.html
http://man7.org/linux/man-pages/man2/sigaction.2.html

APSys ’21, August 24–25, 2021, Hong Kong, China Wonsup Yoon, Jinyoung Oh, Jisu Ok, Sue Moon, and Youngjin Kwon

[8] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum.
IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud Ser-
vices. In 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), pages 250–257, 2015.

[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systemswith YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
page 143–154, New York, NY, USA, 2010. Association for Computing
Machinery.

[10] IBM Corporation. and Michael Kerrisk. userfaultfd. http://man7.org/
linux/man-pages/man2/userfaultfd.2.html.

[11] Galois, Inc. The Haskell Lightweight Virtual Machine. https://
github.com/GaloisInc/HaLVM.

[12] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient Memory Disaggregation with Infiniswap.
In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17), pages 649–667, Boston, MA, March 2017. USENIX
Association.

[13] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang
Mao, and Yungang Bao. Who Limits the Resource Efficiency of My
Datacenter: An Analysis of Alibaba Datacenter Traces. In Proceedings
of the International Symposium on Quality of Service, IWQoS ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[14] Ying Huang. mm, swap: VMA based swap readahead. https://lwn.net/
Articles/716296/.

[15] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16), pages 437–450, Denver, CO,
June 2016. USENIX Association.

[16] Kartik Kannapur. NYC Taxi Trips - Exploratory Data Analy-
sis. https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-
exploratory-data-analysis/notebook.

[17] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. OSv—Optimizing the Operating System
for Virtual Machines. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 61–72, Philadelphia, PA, June 2014. USENIX
Association.

[18] Waldemar Kozaczuk. OSv Linux ABI Compatibility.
https://github.com/cloudius-systems/osv/wiki/OSv-Linux-ABI-
Compatibility.

[19] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,
Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,
Specialized Unikernels the Easy Way. In Proceedings of the Sixteenth
European Conference on Computer Systems, EuroSys ’21, page 376–394,
New York, NY, USA, 2021. Association for Computing Machinery.

[20] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Fe-
lipe Huici. Unikernels Everywhere: The Case for Elastic CDNs. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’17, page 15–29, New York,
NY, USA, 2017. Association for Computing Machinery.

[21] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A
Linux in Unikernel Clothing. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[22] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is Twitter, a Social Network or a NewsMedia? In Proceedings of the 19th
International Conference on World Wide Web, WWW ’10, page 591–600,
New York, NY, USA, 2010. Association for Computing Machinery.

[23] Redis Labs. How fast is Redis? https://redis.io/topics/benchmarks.

[24] Redis Labs. LRANGE - Redis. https://redis.io/commands/lrange.
[25] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,

Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, and et al. Software-Defined Far Memory in
Warehouse-Scale Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 317–330, New
York, NY, USA, 2019. Association for Computing Machinery.

[26] Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: A
Unikernel for Extreme Scale Computing. In Proceedings of the 6th In-
ternational Workshop on Runtime and Operating Systems for Supercom-
puters, ROSS ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[27] Jiuxing Liu, Wei Huang, Bülent Abali, and Dhabaleswar K. Panda.
High Performance VMM-Bypass I/O in Virtual Machines. In Atul
Adya and Erich M. Nahum, editors, Proceedings of the 2006 USENIX
Annual Technical Conference, Boston, MA, USA, May 30 - June 3, 2006,
pages 29–42. USENIX, 2006.

[28] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library Operating Systems for the
Cloud. SIGARCH Comput. Archit. News, 41(1):461–472, March 2013.

[29] Anil Madhavapeddy and David J. Scott. Unikernels: Rise of the Virtual
Library Operating System. Queue, 11(11):30–44, December 2013.

[30] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
VM is Lighter (and Safer) than Your Container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, page 218–233,
New York, NY, USA, 2017. Association for Computing Machinery.

[31] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the Art of
Network Function Virtualization. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14), pages 459–473,
Seattle, WA, April 2014. USENIX Association.

[32] Hasan Al Maruf and Mosharaf Chowdhury. Effectively Prefetching
Remote Memory with Leap. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 843–857. USENIX Association, July
2020.

[33] Hossein Moein. DataFrame. https://github.com/hosseinmoein/
DataFrame.

[34] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Bi-
noy Ravindran. A Binary-Compatible Unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 2019, page 59–73, New York, NY, USA,
2019. Association for Computing Machinery.

[35] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high cpu efficiency for
latency-sensitive datacenter workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’19, page 361–377, USA, 2019. USENIX Association.

[36] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi, Bernard Metzler, Ion-
nis Koltsidas, and Thomas R. Gross. A Hybrid I/O Virtualization
Framework for RDMA-Capable Network Interfaces. SIGPLAN Not.,
50(7):17–30, March 2015.

[37] QEMU. Paravirtualized RDMADevice (PVRDMA). https://github.com/
qemu/qemu/blob/master/docs/pvrdma.txt.

[38] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. Unikernels: The Next Stage of Linux’s Dominance. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS ’19, page
7–13, New York, NY, USA, 2019. Association for Computing Machinery.

[39] Zhenyuan Ruan. AIFM. https://github.com/aifm-sys/aifm.

77

http://man7.org/linux/man-pages/man2/userfaultfd.2.html
http://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://github.com/GaloisInc/HaLVM
https://github.com/GaloisInc/HaLVM
https://lwn.net/Articles/716296/
https://lwn.net/Articles/716296/
https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://www.kaggle.com/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/notebook
https://github.com/cloudius-systems/osv/wiki/OSv-Linux-ABI-Compatibility
https://github.com/cloudius-systems/osv/wiki/OSv-Linux-ABI-Compatibility
https://redis.io/topics/benchmarks
https://redis.io/commands/lrange
https://github.com/hosseinmoein/DataFrame
https://github.com/hosseinmoein/DataFrame
https://github.com/qemu/qemu/blob/master/docs/pvrdma.txt
https://github.com/qemu/qemu/blob/master/docs/pvrdma.txt
https://github.com/aifm-sys/aifm

DiLOS: Adding Performance to Paging-based Memory Disaggregation APSys ’21, August 24–25, 2021, Hong Kong, China

[40] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. AIFM: High-Performance, Application-Integrated Far Memory.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332. USENIX Association, November
2020.

[41] Salvatore Sanfilippo. Redis. https://redis.io.
[42] ScaleGrid. Top Redis Use Cases by Core Data Structure

Types. https://scalegrid.io/blog/top-redis-use-cases-by-core-data-
structure-types/.

[43] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:
A Disseminated, Distributed OS for Hardware Resource Disaggrega-
tion. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 69–87, Carlsbad, CA, October 2018.
USENIX Association.

[44] Matt Stancliff. Redis Quicklist - From a More Civilized Age. https:
//matt.sh/redis-quicklist.

[45] Shelby Thomas, Geoffrey M. Voelker, and George Porter. CacheCloud:
Towards Speed-of-light Datacenter Communication. In 10th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston,
MA, July 2018. USENIX Association.

[46] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-
jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
Borg: The next Generation. In Proceedings of the Fifteenth European
Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[47] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A Memory-Disaggregated Managed Runtime.
In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 261–280. USENIX Association, November
2020.

[48] Dan Williams and Ricardo Koller. Unikernel Monitors: Extending
Minimalism Outside of the Box. In 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 16), Denver, CO, June 2016. USENIX
Association.

[49] Jian Yang, Joseph Izraelevitz, and Steven Swanson. FileMR: Rethinking
RDMA Networking for Scalable Persistent Memory. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 111–125, Santa Clara, CA, February 2020. USENIX Association.

78

https://redis.io
https://scalegrid.io/blog/top-redis-use-cases-by-core-data-structure-types/
https://scalegrid.io/blog/top-redis-use-cases-by-core-data-structure-types/
https://matt.sh/redis-quicklist
https://matt.sh/redis-quicklist

	Abstract
	1 Introduction
	2 Motivation
	3 Design and Key Components
	3.1 Design Overview
	3.2 Fast Page Fault Handler
	3.3 Prefetcher
	3.4 Page Manager
	3.5 Communication over RDMA
	3.6 Memory Server
	3.7 App-aware Prefetching Guide
	3.8 Compatibility

	4 Implementation
	5 Evaluation
	5.1 Comparison with the State-of-the-Arts
	5.2 App-aware Prefetcher

	6 Related Work
	7 Conclusion
	References

