
Dynamic Dispatcher Assignment With Flat-Combining
Gangmin Lee

KAIST
Republic of Korea
lgm9@kaist.ac.kr

Wonsup Yoon
KAIST

Republic of Korea
wsyoon@kaist.ac.kr

Sue Moon
KAIST

Republic of Korea
sbmoon@kaist.ac.kr

1 Introduction
Modern network servers must deliver low tail latency to
meet service level objectives (SLOs). In datacenters, these
SLOs often fall within microseconds, posing challenges for
existing operating systems. Consequently, redesigning key
components of the operating system becomes essential.
To meet SLOs, various efficient scheduling designs have

focused on reducing tail latency. ZygOS highlights the impor-
tance of microsecond-scale scheduler design in networked
systems, modeling tail latency trends across different queu-
ing models and introducing a work-stealing-based sched-
uler to improve microsecond-level tail latency [8]. Shin-
juku demonstrates the benefits of preemptive scheduling in
microsecond-scale scheduling and introduces a low-overhead
thread preemption technique using hardware instructions [6].
Concord further enhances preemptive scheduling by leverag-
ing compiler techniques to reduce preemption overhead [5].
Additionally, Persephone incorporates application-level in-
formation into scheduling algorithms [1], Shenango improves
CPU efficiency through fast core reallocation [7], and Cal-
adan introduces scheduling mechanisms that mitigate re-
source contention in CPU cache and memory bandwidth [2].
Centralized queueing is one of the most widely used de-

signs for microsecond-scale scheduling, adopted by systems
like Shinjuku, Concord, and Persephone. It employs a pinned
dispatcher thread that receives network requests and dis-
tributes them to worker threads, and the worker threads
process the requests. By utilizing a single queue, this de-
sign eliminates load imbalance across workers and lock con-
tention, ensuring efficient request handling through lock-
free message-passing.
Centralized queueing achieves low tail latency but re-

quires a dedicated dispatcher thread that continuously polls
the network queue and monitors worker threads. This dis-
patcher occupies an entire CPU core, which leads to inef-
ficient CPU utilization. To address this problem, Concord
introduces a work-conserving dispatcher that preempts run-
ning applications to handle dispatching when necessary.

To address CPU inefficiency, we adopt flat-combining [3],
a synchronization mechanism in which a lock holder (com-
biner) processes requests from other threads, reducing lock
contention and improving concurrency. Applying this to
centralized queueing, we replace the dedicated dispatcher
with a dynamically assigned worker thread that assumes the
role when needed.

To demonstrate the potential advantages of our design, we
conduct an experimentwith our preliminary implementation.
In the experiment, our design achieves 84% lower tail latency
and 14% higher throughput than the baselines in a RocksDB
key-value store workload.

2 Preliminary Design and Implementation
The core of our design is dynamically assigning a dispatcher
among worker threads. Our preliminary assignment process
follows these steps:
1. When a worker thread is idle, it attempts to acquire

a global lock for a centralized queue. At startup, all
threads are idle.

2. Among idle threads, only one thread holds the global
lock and becomes a dispatcher, while the others remain
worker threads.

3. The dispatcher thread distributes requests to all workers
(including itself).

4. The dispatcher thread releases the global lock and re-
sumes execution as a worker thread.

5. The worker threads process dispatched requests and
repeat from the first step on completion.

We implemented this design in a networked request-handling
system. The system is based on the Linux UDP networking
stack and written in C++.

3 Evaluation
To evaluate the potential performance gains of our design, we
compare it against three baselines: Simple Scheduler, Worker
Access, and Fixed Round-Robin Dispatcher.
• Simple Scheduler: Requests are evenly distributed to
worker queues. Since each worker has its own queue, no
synchronization overhead occurs.

• Worker Access: All received requests are stored in a
shared global queue, andworkers directly access the queue.
A global lock manages concurrent access to the queue.

• Fixed Round-RobinDispatcher:A dedicated dispatcher
thread distributes requests to workers. This design follows
the centralized queueing in previous studies [1, 5, 6].
We also implement a load generator that simulates multi-

ple clients to load our implementation and the baseline. This
load generator and the baselines are also implemented using
the C++ and Linux UDP networking stack.
For the workload, we use RocksDB [4], a widely used

key-value store in datacenters. At experiment startup, we
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Figure 1. Performance comparison between our design and baselines.

populate the database with key-value pairs (randomly gen-
erated 20-character strings) and measure the GET query
performance using the load generator. The key performance
metrics for the evaluation include median latency, P99 la-
tency, and achievable throughput.

Figure 1 shows the results. Our design achieves lower me-
dian and tail latency compared to baselines overall. This re-
sult is mainly due to a reduced load imbalance across workers
compared to Simple Scheduler, reduced lock contention than
Worker Access, and a higher number of workers than Fixed
Round-Robin Dispatcher. Ours also outperforms baselines
for achievable throughput and delivers up to 84% lower tail
latency and 14% higher throughput. However, at low through-
put levels, the Fixed Round-Robin Dispatcher achieves better
tail latency, as the number of worker threads becomes less
significant in this scenario due to the low throughput.

4 Conclusion and Future Work
This paper explores a new scheduler design inspired by
flat-combining and its potential performance benefits. It
improves centralized queueing by dynamically assigning
a dispatcher among worker threads if necessary. Using a
flat-combining-based dispatcher assignment, the scheduler
reduces synchronization overhead in the assignment process.
In the evaluation of our preliminary design and implemen-
tation, our approach improves P99 latency by up to 84%
and increases throughput by 14% compared to baselines in a
RocksDB workload.
Future work includes optimizing dispatcher assignment

strategies for NUMA architectures, developing a complete
system with a user-space networking stack, extensively eval-
uating the impact of various network protocols and data
structures, and integrating this design with state-of-the-art
systems such as Shinjuku, Concord, and Persephone [1, 5, 6].
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