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Confidentiality and integrity are essential for secure communication. In RDMA-based systems, however,
they are often neglected because security mechanisms impose significant performance overheads. In this
work, we design a secure RDMA data path that ensures confidentiality and integrity by protecting data in
transit and at the remote side using encryption and checksums. To reduce security overhead, our system
offloads cryptographic operations to the RDMA NIC (RNIC). However, hardware limitations and relatively
slow cryptography performance in RNICs make a secure and efficient design challenging. We address these
challenges with three key techniques: dynamic key reconfiguration, configuration-data batching, and context
pooling. We also conduct a case study with RDMA memory disaggregation systems to evaluate when offloading
is beneficial. We find that naive offloading degrades performance and that overlapping CPU’s computation
with RNIC’s cryptography is essential to realizing its benefits. Our evaluation shows that overlapping achieves
up to 9.63x lower P99.9 latency than a CPU-based secure RDMA data path on RocksDB.
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1 Introduction

While RDMA is widely used in modern networking systems, its security aspects have received
little attention. As discussed in Rothenberger et al. [25], current RDMA systems offer only minimal
security mechanisms in order to preserve high performance. For example, to shorten the data path
to remote memory, most RDMA-based systems transmit data in plain text, which leads to potential
information leaks in the network or at remote nodes. Encryption is the fundamental defense against
information leakage, but due to its substantial performance overhead, RDMA-based systems have
been largely avoiding it.

Meanwhile, hardware vendors have introduced new cryptography acceleration features on their
products. NIC hardware vendors have released cryptography-capable RDMA NICs (RNICs) that
perform cryptography in the network [2, 3, 8]. These RNICs accelerate core cryptographic tasks in
network workloads, such as IPsec, TLS, and encrypted NVMe-over-Fabrics.

In this paper, we design a secure and efficient RDMA data path that leverages the state-of-the-art
cryptography features in RNICs. For confidentiality, the data path employs AES-XTS to encrypt
payloads before RDMA WRITEs to remote memory and to decrypt payloads upon RDMA READs.
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We choose AES-XTS because it supports encryption parallelism and random access, which are
essential features for applications that access remote memory in parallel and randomly. For integrity,
we use CRC to protect the payload. By appending and verifying payload checksums, the system
detects unintended modifications to encrypted data.

However, cryptographic offloading on RNICs is not straightforward and poses new challenges.
First, RNIC hardware restrictions impose careful use of offloading. For example, AES-XTS re-
quires per-remote-page tweak keys (supplementary keys to generate nonces) to defend against
watermarking attacks that reveal plaintext through recurring ciphertext structures. This, in turn,
demands configuring a large number of keys in the RNIC to support large remote memories. RNIC’s
SRAM size, however, is too small to store all tweak keys. To overcome this hardware restriction,
we devise a dynamic cryptography key reconfiguration mechanism that reduces the number of
tweak keys by appending a key-configuration request before each RDMA READ or WRITE. This
approach reconfigures the existing tweak key on demand, allowing the RNIC to support large
remote memories with a key. Also, we further improve the mechanism with configuration-data
batching and cryptography context pooling, which reduce PCle round-trips and tweak-key-creation
costs, respectively.

The second challenge is that cryptography offloading is often slower than CPU execution. Modern
CPUs include AES-NI/VAES and vector carry-less multiply (VPCLMULQDQ) instructions, enabling
high-throughput AES and CRC. As a result, CPUs often outperform current RNICs on encryption
tasks.

Our evaluation shows that RNIC-based cryptography is slower than CPU-based cryptography,
based on a performance breakdown of the secure RDMA data paths. Thus, naively offloading
cryptography to the RNIC reduces throughput and, in turn, increases latency by elongating the
cryptography critical path.

How can the secure RDMA data path achieve performance gains by offloading? We conduct a
case study with RDMA-based memory disaggregation systems, where compute nodes dynamically
allocate and access memory from remote nodes via RDMA-based remote paging. We extend two
existing memory disaggregation systems, DiLOS [38] and Adios [37], which employ two different
paging mechanisms: busy-waiting and yielding, respectively. DiLOS performs busy-waiting: issuing
a page fetch request and busy-waiting for its completion. Because of its simplicity and low latency,
many memory disaggregation systems adopt busy-waiting [1, 14, 19, 24, 29, 35]. In contrast, Adios
employs yielding for paging. Instead of continuously polling for RDMA completions, the CPU
performs context-switching and schedules other work while the RNIC processes RDMA requests.
This design prevents busy-waiting from blocking other requests, thereby improving throughput
and tail latency.

We integrate the secure RDMA data paths into the memory disaggregation systems to evaluate
their system-wide performance impacts. The microbenchmark reveals how to gain performance
from RNIC offloading. In DiLOS, RNIC-based offloading offers lower throughput and higher P99.9
latency than CPU-based processing. In Adios, on the other hand, RNIC offloading achieves better
P99.9 latency and throughput than CPU processing. These results show that naive offloading (i.e.,
offloading with busy-waiting) degrades performance, and that overlapping is essential for efficient
cryptography offloading.

To see application-level impact, we also evaluate cryptography offloading using two real-world
applications running on the memory disaggregation systems: RocksDB [17] and FAISS [9]. Adios
with RNIC offloading demonstrates 5.66x and 9.63x better P99.9 latency than DiLOS with RNIC
offloading at 398 KRPS and Adios with CPU processing at 645 KRPS, respectively. These results
are consistent with our microbenchmark findings. For FAISS, the performance improvement from
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offloading diminishes, as latency is primarily dominated by request processing in the microsecond-

scale domain.
We summarize our key contributions as follows:

e We design and implement a secure and efficient RDMA data path that leverages RNIC-based
cryptography acceleration, alongside a CPU-based secure RDMA data path for comparison.

e We propose three mechanisms for efficient RNIC cryptographic offloading: dynamic cryptography
key reconfiguration, configuration-data batching, and cryptography context pooling.

e We conduct a performance breakdown of the RNIC-based and CPU-based secure RDMA data
paths, revealing that naive RNIC offloading of cryptography degrades performance.

e Throughout a case study, we extend and compare two memory disaggregation systems (Di-
LOS [38] and Adios [37]) to use secure RDMA data paths.

e On evaluation with the memory disaggregation systems, we demonstrate that overlapping CPU’s
computation and RNIC’s cryptography is essential to realizing offloading benefits.

2 Background

In this section, we introduce the cryptography used in this paper (AES-XTS and CRC) and offloading
opportunities in RNIC.

AES-XTS for confidentiality. AES (Advanced Encryption Standard) is a standard symmetric
block cipher most widely used across modern computing systems. To meet various requirements
for encryption, AES supports several modes of operation, such as Galois/Counter Mode (GCM) for
authenticated encryption with additional data (AEAD) and Cipher Block Chaining (CBC) for diffu-
sion. XTS (XEX Tweakable block cipher with ciphertext Stealing) is a block cipher mode originally
designed for storage devices [12]. In XTS mode, tweak values, which are usually derived from the
sector number (LBA) in storage, are used to prevent watermarking attacks. When encrypting a
block with a secret key, the tweak based on LBA is XOR-ed with both the input and output of the
block cipher, producing different ciphertexts even for identical plaintexts. Moreover, since the XTS
mode does not rely on the ciphertext of the previous block during encryption, it enables parallel
processing and random access to sectors. These advantages are also beneficial to high-performance
and random-access remote memory; thus, we use AES-XTS for secure RDMA in this work.

CRC for integrity. The AES-XTS cipher itself does not offer data integrity. Therefore, it needs
an extra mechanism to mitigate data corruption or forgery. CRC (Cyclic Redundancy Check) is
a viable option that balances security and performance in low-latency systems. By performing
and encrypting data with its checksum, unintended modification of the ciphertext can be detected.
Yet there are many other options for integrity, such as cryptographic hashes and public key
cryptography, but they require higher computation power than CRC. Due to these reasons, many
RDMA systems adopt CRC [13]; thus, we also use CRC to guarantee integrity without much
overhead.

RDMA NIC cryptography offloading. Modern RNICs have included acceleration features that
enable hardware-based encryption [2, 8, 15, 30, 31]. These features accelerate many encryption
workloads in datacenters, from widely-used network security protocols, such as IPSec and TLS,
to encrypted remote block storage (e.g., iSCSI and NVMe-over-Fabrics). To use these features,
DPDK [23] and vendor-specific libraries (e.g., 1ibm1x5 [16] for NVIDIA RNICS) provide APIs for
offloading. In this work, we select NVIDIA ConnectX-6 Dx as a representative RNIC that handles
cryptography offloading and design RNIC-based secure memory disaggregation.
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Fig. 2. Secure RDMA READ data path for a 4KB page. Yellow boxes are offloaded to RNIC.

3 Secure and Efficient RDMA Data Path

In this section, we present a secure RDMA data path that offloads cryptographic tasks to RNIC. The
RDMA WRITE path encrypts and transmits data upon RDMA WRITE, and the RDMA READ path
receives and decrypts data upon RDMA READ. During encryption and decryption, CRC checksums
are used to offer integrity. We first illustrate the secure data path in an RNIC and highlight its
hardware restrictions. To overcome these restrictions, we introduce three techniques: dynamic
cryptography key reconfiguration, configuration-data batching, and cryptography context pooling.
For CRC, we incorporate zero padding for data transmission and a host-side checksum handler.

3.1 Overview of RNIC Cryptography Offloading

Modern RNIC models support cryptography offloading for AES-XTS and CRC. By configuring
the RNIC as represented in Figures 1 and 2, RDMA offers both confidentiality and integrity. In
the WRITE data path (Figure 1), the RNIC first computes a CRC64 checksum over the 4 KB input
page, then encrypts the data along with the checksum. Since the RNIC’s AES-128-XTS hardware
requires the input size to be a multiple of 16 bytes, we append 8 bytes of zero padding, resulting
in a total input size of 4112 bytes. After encryption, the RNIC packetizes the ciphertext using the
RDMA subsystem. The READ path (Figure 2) is similar to the WRITE path in reverse order: the
RDMA subsystem first depacketizes the received data, then the AES-128-XTS engine decrypts it,
and finally, the CRC64 subsystem recomputes the checksum. Additionally, the RNIC compares
the CRC64 result with the checksum embedded in the decrypted data and reports the integrity
verification result to the host.

To configure AES-XTS, RNICs require two cryptography keys (secret key and tweak). The secret
key is a global key shared across all pages, and the tweak is a per-remote-page key to prevent
watermarking attacks. However, storing all tweaks in RNIC is unrealistic due to its limited SRAM
capacity. For example, supporting 128 GB of remote memory requires loading 32 million tweaks in
the RNIC, far exceeding the several megabytes of the RNIC’s limited on-chip SRAM.
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Fig. 3. Overview of key techniques used in data path.

3.2 Dynamic Cryptography Key Reconfiguration

To address the SRAM capacity limitation of RNIC’s cryptography offloading, we devise a dynamic
cryptography key reconfiguration technique. Instead of pre-configuring tweaks for all remote
pages, our secure data path reconfigures and reuses an existing cryptography in RNIC by posting
a reconfiguration work-queue element (WQE) that updates the cryptography context before the
data WQE. Notably, the data path submits reconfiguration requests directly through the RDMA
QP (Queue Pair). In other words, the reconfiguration process operates entirely in user space, without
intervention from the kernel or VMM, avoiding costly mode switches and context switches. As
a result, the cryptography key reconfiguration incurs minimal overhead on the host and has a
negligible impact on I/O latency.

To further improve dynamic cryptography key reconfiguration, we introduce two additional
techniques: configuration-data batching and cryptography context pooling. Figure 3 illustrates our
design. In RNIC, the configuration (Cfgl) request changes the tweak used for the cryptography
engine, and then the RDMA request is handled by the cryptography and RDMA modules.

3.3 Configuration-Data Batching

To configure cryptography keys in RNIC, the host must communicate with the RNIC over the PCle
channel. In a naive design, this additional communication introduces a PCle round-trip delay for
every RDMA request, approximately 900 nanoseconds [20], which accounts for 27% of 3.3 uys RDMA
READ latency. This overhead undermines the performance benefits of cryptography offloading
and must be carefully mitigated.

To hide the latency introduced by configurations, we employ configuration-data batching. When
the host submits configuration and data (READ/WRITE) requests to a QP, it chains a configura-
tion request immediately before the corresponding data request. The host then rings the QP’s
doorbell register to submit both requests as a single batch. The RNIC processes the requests in
order: first applying the configuration, then executing the data operation using the newly config-
ured cryptography key. In Figure 3, the host submits Cfg2/R2 and Cfg3/R3 as batches #2 and #3,
respectively.

Additionally, the batching mechanism leverages unsignaled requests to reduce the overhead
associated with completion handling. Since RDMA with encryption involves two RDMA opera-
tions, two completions arise in the host. These redundant completions introduce additional PCle
transactions and increase the host’s burden in handling completions. To mitigate this inefficiency,
we mark configuration requests as unsignaled, suppressing their completions on the host. As the
configuration operation is chained with the subsequent data request, the host infers its completion
by polling the completion of the chained data request.
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3.4 Cryptography Context Pooling

To perform cryptography, RNIC requires a cryptography context containing secret and tweak
keys. During an encrypted RDMA request, the cryptography context must not be shared across
concurrent requests to prevent races. Creating a new context for every request incurs significant
overhead. Instead, we incorporate cryptography context pooling into our design to manage keys in
RNIC. At system start-up, the system initializes pools of pre-created cryptography contexts. When
issuing an encrypted RDMA request, the system allocates a context from the pool for exclusive use
by that request. Each QP is provisioned with its own context pool, sized to match the QP’s maximum
outstanding request capacity, ensuring that all in-flight requests have access to a dedicated context.

4 Implementation

We implement our secure RDMA data path using NVIDIA’s vendor-specific cryptography APIs [16],
configuring the RNIC to perform cryptographic operations on RDMA payloads. NVIDIA RNICs
offer multiple configuration options for when to encrypt and the order of encryption and checksum
operations [11]. To configure RNIC as represented in Figures 1 and 2, we turn on encrypt_on_tx
and STGNATURE_BEFORE_CRYPTO_ON_TX! (configuration C in [11]).

NVIDIA RNICs manage cryptography contexts through MKey data structures, which contain
configurations for memory layout, encryption, and checksum. The memory layout specifies which
host memory regions the RNIC operates on, such as which pages to encrypt and where to place
decrypted data. For encryption, the MKey has a secret key and a tweak parameter. We generate a
random secret key shared across all MKeys and derive the tweak from the remote address of each
request. For checksums, NVIDIA RNIC supports several CRC variants (CRC32, CRC32C, CRC64,
and T10DIF) [10]. We select CRC64, which provides the largest checksum and thus the lowest
collision probability among the variants.

On ConnectX-6 Dx, an NVIDIA’s RNIC model, each MKey covers only a single encryption
block (up to 4160 bytes) [21, 27]. Newer ConnectX-7 RNICs add support for multi-block encryption,
but they only support incrementing the tweak key by one after encrypting each block. This auto-
increment feature works only for sequential remote memory accesses, where the accessing remote
address (used as the tweak key) increases linearly. For random access, however, the RNIC still
requires a separate MKey with the correct tweak for the target remote address, necessitating
dynamic reconfiguration.

4.1 Secure RDMA Data Path with CPU Instructions

For comparison, we build baseline systems using CPU cryptography instructions. We use Intel
CPU’s AES-NI and VAES (vector-extended version of AES-NI) instructions, the de facto standards
for CPU-based encryption. For CRC64 calculation, we use the new VPCLMULQDQ instruction
in Ice Lake architecture, which boosts checksum performance by SIMD processing of carry-less
multiplication. In this design, the CPU handles the cryptographic logic (yellow boxes in Figures 1
and 2), while the RNIC data path (blue boxes) remains unchanged.

To implement CPU-based cryptography, we use libgerypt [22] for AES-XTS and crc64-cxx [36]
for CRC64 checksum. The libgcrypt library leverages AES-NI and, when available, VAES for
acceleration. Our evaluation includes results from both AES-NI and VAES-enabled configurations
(§5). Due to a lack of AVX-512 support in our case study systems described in §5.2, the VAES-based
implementation relies on AVX2 only. Using wider vector instructions (AVX-512 [5] or AVX-10 [4])
would yield higher encryption throughput, and we leave this optimization to future work. We use
libgerypt 1.11, the most recent version available at the time of evaluation. We also have considered

In NVIDIA RNICs, signature refers to the checksum.
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Fig. 4. Performance breakdown of AES-XTS-encrypted 4KB READ and WRITE. In RNIC-crypto, encryption
and decryption are also handled in RNIC; thus AES-XTS/CRC64 is omitted.

OpenSSL 3.5.0 for cryptography implementation, but we choose libgcrypt since OpenSSL supports
only AVX-512 for VAES-based AES-XTS encryption, falling back to AES-NI in our systems. The
crc64-cxx library supports AVX2-based SIMD processing of CRC64 computation, reporting up to
22X higher throughput than scalar implementations [36].

5 Evaluation

In this section, we evaluate the performance impact of our secure RDMA data path. Our evalu-
ation has three goals: (1) to assess the performance of secure RDMA data paths using different
cryptographic implementations (RNIC offloading vs. CPU-based computation), (2) to identify the
performance impact on RDMA-based systems, and (3) to find an efficient mechanism for utilizing
the secure RDMA data path. For (1), we compare RNIC-based encryption against CPU-computed
baselines (AES-NI and VAES). For (2) and (3), we conduct a case study with memory disaggregation
systems built on DiLOS [38] and Adios [37], which have two different remote paging mechanisms:
busy-waiting and yielding, respectively.

Testbed. We configure a testbed comprising a compute node and a remote memory node. The
compute node connects to the remote memory node via a 100 GbE Ethernet link. The computing
and remote memory nodes have an Intel Xeon Gold 6330 CPU @ 2.00GHz, 256GB DDR4 3200
MHz memory, and an NVIDIA ConnectX-6 Dx 100GbE card (MCX623106AC-CDAT) that supports
cryptography offloading. Both nodes run on Ubuntu 20.04 with Linux kernel 5.15 and NVIDIA
OFED 5.8. For fair comparisons, all the systems under testing use 2 MB huge pages for remote
memory nodes and 4 KB pages for compute nodes. In the case study, we use an additional load
generator node emulating many clients. The load generator node runs the same open-loop load
generator implementation in Yoon et al. [37], employing a Poisson process to generate loads. To
avoid runtime and software overhead, the load generator sends pre-created requests and measures
their latency through hardware timestamps in the NIC. This node uses Ubuntu 20.04 with Linux
kernel 5.4 on a server with Intel Xeon Gold 6226R @ 2.90GHz, 384GB DDR4 2933MHz memory,
and an NVIDIA ConnectX-6 Dx 100GbE card (MCX623106 AN-CDAT).

5.1 Performance Breakdown

We first analyze the performance impacts of cryptography in RDMA by comparing four RDMA
data paths: unencrypted (Unencrypted), encryption with AES-NI CPU instructions (AES-NI), en-
cryption with VAES CPU instructions (VAES), and the secure RDMA data path with RNIC of-
floading (RNIC-crypto), as described in §3. We measure mean and tail latency of 4 KB RDMA
READ and WRITE operations, which are typical operations in RDMA applications such as memory
disaggregation and remote storage.
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Fig. 5. Random array indirection microbenchmark results. The total array size in memory node is 40 GB.
For latency experiments, the local cache size is 8 GB. Achievable throughput is the throughput where P99.9
latency is lower than 100 ps.

Figure 4 shows the performance breakdown across implementations. Overall, CPU-based encryp-
tion methods (AES-NI and VAES) exhibit slightly better latency than RNIC offloading. Especially,
the VAES implementation achieves 23% and 13% better mean latency than RNIC for READ and
WRITE, respectively. This result shows that cryptography processing is slower in RNICs than in
CPUs. In turn, naively offloading cryptography to RNIC will result in slower performance.

5.2 Case Study with Memory Disaggregation Systems

In summary, the performance of cryptography offloading is slower than CPU processing. We conduct
a case study with memory disaggregation systems to figure out the system-wide performance
impact of NIC offloading and how to gain performance from offloading.

Memory disaggregation systems. One of the systems using RDMA is memory disaggregation.
Memory disaggregation is a new approach that separates memory resources from compute nodes
and pools them into memory nodes. Compute nodes dynamically allocate and utilize memory in
memory nodes through a fast network, such as RDMA. To offer transparent abstraction, remote
paging, which evicts unused pages to memory nodes and fetches them on use, is a widely-used
design [1, 14, 19, 24, 29, 35, 37, 38].

The paging-based memory disaggregation systems typically employ one of two strategies:
busy-waiting and yielding. In busy-waiting, the host continuously polls for RDMA completion
after issuing a request. Due to its simplicity and solid performance, many systems adopt this
approach [1, 14, 19, 24, 29, 35, 38]. In contrast, the yielding strategy allows the host to relinquish
the CPU and schedule other work while the RNIC processes RDMA requests. Adios demonstrates
that when paired with an efficient scheduler and thread management, yielding achieves lower tail
latency and higher throughput compared to busy-waiting [37].

For this case study, we choose DIiLOS [38] and Adios [37], which represent busy-waiting and
yielding, respectively. We extend both systems to use our secure RDMA data path. In Adios, CPU
computation overlaps with RNIC cryptographic processing. During page fetching, the host issues
RDMA fetch and decryption requests to the RNIC, then yields to execute other tasks while the data
is being fetched and decrypted.

Legends. We evaluate combinations of AES-NI, VAES, and RNIC-based encryption with DiLOS
and Adios, resulting in six configurations: DiLOS-AESNI, DiLOS-VAES, DiLOS-RNIC, Adios-AESNI,
Adios-VAES, and Adios-RNIC.

Raw Performance. To measure the system-wide performance impact of our secure RDMA data
path on both systems, we evaluate their raw performances using a random array indirection
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Fig. 6. P99.9 and median latency for RocksDB (99% GET and 1% of SCAN; latency from GETs only) and FAISS.
The total sizes of memory used in the memory node are about 40 GB and 48 GB; the local cache sizes for
compute nodes are 8 GB and 10 GB, respectively.

microbenchmark. The memory node has a 40 GB integer array, and the compute node has 8 GB
of cache for the array. When the compute node accesses an entry of the array, if it is not cached
locally, a page fault occurs, and a page containing the entry is fetched through the secure RDMA
data path. The load generator creates and sends concurrent requests containing a random array
index, and the compute node serves the requests through indirection of the 40 GB integer array.

We measure the P99.9 latency, median latency, and achievable throughput across varying local
cache sizes. Figures 5(a) and 5(b) show the measured latency of the evaluated systems. On DiLOS,
the VAES-based system (DiLOS-VAES) slightly outperforms the RNIC-based one (DiLOS-RNIC).
In contrast, on Adios, the RNIC-based system (Adios-RNIC) significantly outperforms both the
AES-NI-based (Adios-AESNI) and VAES-based (Adios-VAES) systems. On comparison of achievable
throughput (Figure 5(c)), results show a similar conclusion: RNIC offloading is effective only in
Adios; on DILOS, it results in a slight throughput degradation. These results show that systems that
overlap host computation and cryptography gain performance from RNIC offloading by freeing
up host CPU cycles. In particular, as shown in Figure 4(a), the latency gap between unencrypted
READs and RNIC-crypto-encrypted READs is around 1 ps. Adios uses this 1 us to serve other
requests, whereas DiLOS wastes the same duration in busy-waiting.

To evaluate the system-wide performance impacts on real applications, we also conduct studies
using two popular applications: a key-value store and a vector search engine.
Key-value store. For the key-value store, we select RocksDB [17] as a representative system.
A RocksDB server runs on the compute node connected to the memory node and is populated
with approximately 40 GB of key-value data. Similar to the previous experiment, the memory
node has the whole 40 GB of data, and the compute node caches 8 GB of the data locally. We use
randomly generated key-value pairs, with keys of 50 bytes and values of 1024 bytes. At start-up,
the server populates these key-value pairs, and the load generator issues requests by selecting
keys from the pre-populated set. On this configuration, we measure P99.9 and median latency
of a workload that consists of 99% of GET and 1% of SCAN(100) requests. Figures 6(a) and 6(b)
show the latency results of GET requests. The overall trends are consistent with those observed
in the microbenchmark: cryptography offloading is effective only on Adios. These results also
support that the secure RDMA data path necessitates system designs that overlap computation and
cryptography to gain performance.
In-memory vector database. We also conduct an experiment with the FAISS vector database [9],
which represents complex and millisecond-scale systems. To load and query the systems, we
generate a 48 GB workload by sampling the BIGANN dataset [18], and the systems have a 10 GB
local cache (approximately 10% of the sampled dataset size). As shown in Figures 6(c) and 6(d),
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the performance differences between Adios-VAES and Adios-RNIC are minimal. This is because
the benefit of overlapping computation and encryption is relatively small in millisecond-scale
workloads, where request processing time dominates overall latency. As a result, the number of
requests concurrently handled by each worker, which is the primary limiting factor for achievable
throughput, remains consistent across encryption methods, leading to only marginal performance
differences.

6 Discussion and Limitations

Support for other RNIC vendors. We have built our system using vendor-specific cryptography
features of NVIDIA’s RNICs, which are one of the only off-the-shelf RNICs that provide AES-XTS-
encrypted RDMA. However, if the other RNICs have similar APIs and performance behavior for
cryptography offloading, our design will also be applicable to them.

Other offloading opportunities. Intel has introduced QAT (QuickAssist Technology) [6] and
TME-MK (Total Memory Encryption-Multi-Key) [7] to accelerate encryption workloads. QAT
accelerators are devices that handle many cryptography and compression workloads. They were
initially available as separate PCI-E cards or chipsets, but they have recently been integrated into
the CPUs. However, the off-chip QAT (PCle cards or chipsets) introduces high round-trip latency
due to the overhead of the PCle or DMI buses. To mitigate this latency, techniques such as yielding
would be necessary. Even with CPU-integrated QAT, which has shorter latency, overlapping
computation with encryption would be essential to fully realize the performance benefits of QAT-
based acceleration. TME-MK is an encryption feature integrated into the MMUs in modern Intel
Xeon processors. Its primary goal is to mitigate cold boot attacks by encrypting data before going
to main memory, but researchers have proposed other use cases, such as memory tagging [28]
and fine-grained in-process isolation [32]. Using TME-MK, an alternative secure RDMA design
is possible. If the CPU and RNIC map the same physical page but encrypt it with different keys,
data written by one side remains hidden from the other. However, current Intel processors do
not ensure cache coherency under such configurations, necessitating a software-based coherence
protocol. This limitation can incur significant performance overhead from software intervention
and frequent cache invalidations. We leave the exploration of secure and efficient RDMA data paths
leveraging QAT or TME-MK to future work.

Stronger Integrity Guarantee. CRC is an integrity mechanism that protects data against ac-
cidental data loss. In general, cryptographic hash functions such as SHA-256 guarantee stronger
integrity to prevent tampering attacks. We prevent such attacks by encrypting the checksum along
with the data; any attempt to make a checksum collision results in wrong decryption and checksum
failure.

7 Related Work

Secure RDMA. There have been several works on security in RDMA systems. sSRDMA demon-
strates RDMA encryption offloading on ARM-based programmable network adapters [31]. ReD-
MArk demonstrates vulnerabilities and their exploits in RDMA-based systems [25]. 1RMA is
Google’s RDMA implementation suited for multi-tenant environments. IRMA NICs have AES-
GCM encryption blocks that encrypt RDMA packets at line rate [30]. RoCE BALBOA is an ongoing
project that incorporates security features such as encryption on FPGA NICs [15]. In this work, we
have designed a secure RDMA data path based on a commodity RNIC. However, the lesson learned
from this work (e.g., computation-encryption overlapping) would also be applicable to the RNIC
implementations with similar designs.
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Memory disaggregation systems. Many researchers have proposed memory disaggregation
systems. Paging-based memory disaggregation systems employ virtual memory and paging to
transparently support existing unmodified applications [1, 14, 19, 24, 29, 35, 37, 38], and library-
based systems leverage application semantics to further improve their performance [26, 33, 34, 39].
This paper focuses on the security of paging-based memory disaggregation systems, yet our
contribution is orthogonal to the design choices. The library-based systems can also improve their
security using our findings.

8 Conclusion

In this paper, we design and implement a secure RDMA data path that efficiently offloads crypto-
graphic tasks to RNICs. The data path features efficient offloading techniques, such as dynamic
cryptography key reconfiguration, configuration-data batching, and cryptography context pooling.
In evaluation, we reveal that naive offloading results in performance degradation. Throughout a case
study with state-of-the-art RDMA memory disaggregation systems, we conclude that overlapping
computation and cryptography is essential for a secure and efficient RDMA data path.
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